Helmut Seidl

Program Optimization

TU München
Winter 2008/09

Organization

Dates: Lecture: Monday, 12-14
Tuesday, 12-14
Tutorials: Friday, 12-14
Vesal Vojdani: vojdanig@in.tum.de
Material: slides, recording :-)
simulator environment

Grades: - Bonus for homeworks

- written exam

Proposed Content:

1. Avoiding redundant computations
$\rightarrow \quad$ available expressions
\rightarrow constant propagation/array-bound checks
$\rightarrow \quad$ code motion
2. Replacing expensive with cheaper computations
\rightarrow peep hole optimization
$\rightarrow \quad$ inlining
$\rightarrow \quad$ reduction of strength
3. Exploiting Hardware
$\rightarrow \quad$ Instruction selection
$\rightarrow \quad$ Register allocation
$\rightarrow \quad$ Scheduling
$\rightarrow \quad$ Memory management

0 Introduction

Observation 1: Intuitive programs often are inefficient.

Example:

```
void swap (int i, int j) {
    int t;
    if (a[i] > a[j]) {
        t = a[j];
        a[j] = a[i];
        a[i] = t;
        }
    }
```


Inefficiencies:

- Addresses $a[i], a[j]$ are computed three times
- Values a[i], a[j] are loaded twice

Improvement:

- Use a pointer to traverse the array a;
- store the values of $a[i], a[j]$!

```
void swap (int *p, int *q) {
    int t, ai, aj;
    ai = *p; aj = *q;
    if (ai > aj) {
        t = aj;
        *q = ai;
        *p = t; // t can also be
        } // eliminated!
    }
```


Observation 2:

Higher programming languages (even C :-) abstract from hardware and efficiency.
It is up to the compiler to adapt intuitively written program to hardware.

Examples:

... Filling of delay slots;
... Utilization of special instructions;
... Re-organization of memory accesses for better cache behavior;
... Removal of (useless) overflow/range checks.

Observation 3:

Programm-Improvements need not always be correct :-(

Example:

$$
y=f()+f() ; \quad \Longrightarrow \quad y=2 * f() ;
$$

Idea: Save second evaluation of $f()$...

Observation 3:

Programm-Improvements need not always be correct

Example:

$$
y=f()+f() ; \quad \Longrightarrow \quad y=2 * f() ;
$$

Idea: Save the second evaluation of $f()$???
Problem: The second evaluation may return a result different from the first; (e.g., because $f($) reads from the input :-)

Consequences:

$\Longrightarrow \quad$ Optimizations have assumptions.
$\Longrightarrow \quad$ The assumption must be:

- formalized,
- checked :-)
$\Longrightarrow \quad$ It must be proven that the optimization is correct, i.e., preserves the semantics !!!

Observation 4:

Optimization techniques depend on the programming language:
$\rightarrow \quad$ which inefficiencies occur;
\rightarrow how analyzable programs are;
\rightarrow how difficult/impossible it is to prove correctness ...

Example: Java

Unavoidable Inefficiencies:

* Array-bound checks;
* Dynamic method invocation;
* Bombastic object organization ...

Analyzability:

+ no pointer arithmetic;
+ no pointer into the stack;
- dynamic class loading;
- reflection, exceptions, threads, ...

Correctness proofs:
$+\quad$ more or less well-defined semantics;

- features, features, features;
- libraries with changing behavior ...

... in this course:

a simple imperative programming language with:

- variables
- $R=e$;
- $R=M[e]$;
- $M\left[e_{1}\right]=e_{2}$;
- if $(e) s_{1}$ else s_{2}
- goto L;
//
//
//
registers
assignments
loads
stores
conditional branching
no loops :-)

Note:

- For the beginning, we omit procedures :-)
- External procedures are taken into account through a statement $f()$ for an unknown procedure f.
\Longrightarrow intra-procedural
\Longrightarrow kind of an intermediate language in which (almost) everything can be translated.

Example: swap()

0	$A_{1}=A_{0}+1 * i ;$	$A_{0}==\& a$
1	$R_{1}=M\left[A_{1}\right]$;	$R_{1}==a[i]$
2	$A_{2}=A_{0}+1 * j ;$	
3 :	$R_{2}=M\left[A_{2}\right] ;$	$R_{2}==a[j]$
4	if $\left(R_{1}>R_{2}\right)$ \{	
5 :	$A_{3}=A_{0}+1 * j$	
6	$=M\left[A_{3}\right]$;	
7:	$A_{4}=A_{0}+1 * j$	
8 :	$A_{5}=A_{0}+1 * i ;$	
9	$R_{3}=M\left[A_{5}\right] ;$	
10 :	$M\left[A_{4}\right]=R_{3} ;$	
11:	$A_{6}=A_{0}+1 * i ;$	
12 :	$M\left[A_{6}\right]=t ;$	
	\}	

Optimization 1:
Optimization 2: Reuse of subexpressions

$$
\begin{aligned}
& A_{1}==A_{5}==A_{6} \\
& A_{2}==A_{3}==A_{4} \\
& M\left[A_{1}\right]==M\left[A_{5}\right] \\
& M\left[A_{2}\right]==M\left[A_{3}\right]
\end{aligned}
$$

$$
R_{1}==R_{3}
$$

By this, we obtain:

$$
\begin{aligned}
& \begin{array}{l}
A_{1}
\end{array}=A_{0}+i ; \\
& R_{1}=M\left[A_{1}\right] ; \\
& A_{2}= A_{0}+j ; \\
& R_{2}= M\left[A_{2}\right] ; \\
& \text { if }\left(R_{1}>R_{2}\right)\{ \\
& t=R_{2} ; \\
& \begin{array}{ll}
M\left[A_{2}\right] & =R_{1} ; \\
M\left[A_{1}\right] & =t ; \\
& \}
\end{array}
\end{aligned}
$$

Optimization 3:
 Contraction of chains of assignments :-)

Gain:

	before	after
+	6	2
$*$	6	0
load	4	2
store	2	2
$>$	1	1
$=$	6	2

1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then
$\rightarrow \quad$ store it after the first computation;
\rightarrow replace every further computation through a look-up!
\Longrightarrow Availability of expressions
\Longrightarrow Memoization

Problem: Identify repeated computations!

Example:

$$
\begin{aligned}
& z=1 ; \\
& y=M[17] \\
A: & x_{1}=y \\
& \cdots \\
B: & x_{2}=y+z
\end{aligned}
$$

Note:

B is is a repeated computation of the value of $y+z$, if:
(1) A is always executed before B; and
(2) y and z at B have the same values as at $A \quad:-)$
\Longrightarrow We need:
$\rightarrow \quad$ an operational semantics :-)
$\rightarrow \quad$ a method which identifies at least some repeated computations ...

Background 1: An Operational Semantics

we choose a small-step operational approach.
Programs are represented as control-flow graphs.
In the example:

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Edge Labelings:
Test: $\quad \operatorname{Pos}(e)$ or Neg (e)
Assignment: $\quad R=e$;
Load: $\quad R=M[e]$;
Store: $\quad M\left[e_{1}\right]=e_{2}$;
Nop: ;

Computations follow paths.
Computations transform the current state

$$
s=(\rho, \mu)
$$

where:

$\rho:$ Vars $\rightarrow \mathbf{i n t}$	contents of registers
$\mu: \mathbb{N} \rightarrow$ int	contents of storage

Every edge $k=(u, l a b, v)$ defines a partial transformation

$$
\llbracket k \rrbracket=\llbracket l a b \rrbracket
$$

of the state:

