Helmut Seidl

Program Optimization

TU München

Winter 2008/09

Organization

Dates:	Lecture:	Monday, 12-14
		Tuesday, 12-14
	Tutorials:	Friday, 12-14
		Vesal Vojdani: vojdanig@in.tum.de
	Material:	slides, recording :-)
		simulator environment

- **Grades:** Bonus for homeworks
 - written exam

Proposed Content:

- 1. Avoiding redundant computations
 - \rightarrow available expressions
 - \rightarrow constant propagation/array-bound checks
 - \rightarrow code motion
- 2. Replacing expensive with cheaper computations
 - \rightarrow peep hole optimization
 - \rightarrow inlining

...

 \rightarrow reduction of strength

- 3. Exploiting Hardware
 - \rightarrow Instruction selection
 - \rightarrow Register allocation
 - \rightarrow Scheduling
 - \rightarrow Memory management

0 Introduction

Observation 1: Intuitive programs often are inefficient.

```
Example:
    void swap (int i, int j) {
        int t;
        if (a[i] > a[j]) {
            t = a[j];
            a[j] = a[i];
            a[i] = t;
        }
    }
```

Inefficiencies:

- Addresses a[i], a[j] are computed three times :-(
- Values a[i], a[j] are loaded twice :-(

Improvement:

- Use a pointer to traverse the array a;
- store the values of a[i], a[j]!

Observation 2:

Higher programming languages (even C :-) abstract from hardware and efficiency.

It is up to the compiler to adapt intuitively written program to hardware.

Examples:

- ... Filling of delay slots;
- ... Utilization of special instructions;
- ... Re-organization of memory accesses for better cache behavior;
- ... Removal of (useless) overflow/range checks.

Observation 3: Programm-Improvements need not always be correct :-(

Example:

 $y = f() + f(); \implies y = 2 * f();$

Idea: Save second evaluation of f() ...

Observation 3:

Programm-Improvements need not always be correct :-(

Example:

 $y = f() + f(); \implies y = 2 * f();$

Idea:Save the second evaluation of f() ???Problem:The second evaluation may return a result different
from the first; (e.g., because f() reads from the input
:-)

Consequences:

- \implies Optimizations have assumptions.
- \implies The assumption must be:
 - formalized,
 - checked :-)
- $\implies \qquad \text{It must be proven that the optimization is correct, i.e.,} \\ \text{preserves the semantics !!!}$

Observation 4:

Optimization techniques depend on the programming language:

- \rightarrow which inefficiencies occur;
- \rightarrow how analyzable programs are;
- \rightarrow how difficult/impossible it is to prove correctness ...

Example: Java

Unavoidable Inefficiencies:

- * Array-bound checks;
- * Dynamic method invocation;
- * Bombastic object organization ...

Analyzability:

- + no pointer arithmetic;
- + no pointer into the stack;
- dynamic class loading;
- reflection, exceptions, threads, ...

Correctness proofs:

- + more or less well-defined semantics;
- features, features, features;
- libraries with changing behavior ...

... in this course:

a simple imperative programming language with:

- variables
- // registers
- R = e; //
- R = M[e]; //
- $M[e_1] = e_2;$ //
- goto L;
- assignments loads stores • if (e) s_1 else s_2 // conditional branching
 - // no loops :-)

Note:

- For the beginning, we omit procedures :-)
- External procedures are taken into account through a statement *f*() for an unknown procedure *f*.

 \implies intra-procedural

→ kind of an intermediate language in which (almost) everything can be translated.

Example: swap()

Optimization 1:

$$1 * R \implies R$$

Optimization 2: Reuse of subexpressions

$$A_1 == A_5 == A_6$$
$$A_2 == A_3 == A_4$$

$$M[A_1] == M[A_5]$$
$$M[A_2] == M[A_3]$$

$$R_1 == R_3$$

By this, we obtain:

$$A_{1} = A_{0} + i;$$

$$R_{1} = M[A_{1}];$$

$$A_{2} = A_{0} + j;$$

$$R_{2} = M[A_{2}];$$
if $(R_{1} > R_{2})$ {
$$t = R_{2};$$

$$M[A_{2}] = R_{1};$$

$$M[A_{1}] = t;$$
}

.

Optimization 3: Contraction of chains of assignments :-)

Gain:

	before	after
+	6	2
*	6	0
load	4	2
store >	2	2
	1	1
=	6	2

1 Removing superfluous computations

1.1 **Repeated computations**

Idea:

If the same value is computed repeatedly, then

- \rightarrow store it after the first computation;
- \rightarrow replace every further computation through a look-up!
 - \implies Availability of expressions
 - \implies Memoization

Problem: Identify repeated computations!

Example:

$$z = 1;$$

 $y = M[17];$
 $A: x_1 = y+z;$
 $...$
 $B: x_2 = y+z;$

Note:

B is is a repeated computation of the value of y + z, if:
(1) *A* is always executed before *B*; and
(2) *y* and *z* at *B* have the same values as at *A* :-)

 \implies We need:

- \rightarrow an operational semantics :-)
- \rightarrow a method which identifies at least some repeated computations ...

Background 1: An Operational Semantics

we choose a small-step operational approach.

Programs are represented as control-flow graphs. In the example:

start

$$A_1 = A_0 + 1 * i;$$

 $R_1 = M[A_1];$
 $A_2 = A_0 + 1 * j;$
 $R_2 = M[A_2];$
Neg $(R_1 > R_2)$
stop
 $A_3 = A_0 + 1 * j;$

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Edge Labelings:

Test :	Pos (e) or Neg (e)
Assignment :	R = e;
Load :	R=M[e];
Store :	$M[e_1] = e_2;$
Nop :	;

Computations follow paths.

Computations transform the current state

$$s = (\rho, \mu)$$

where:

$\rho: Vars \rightarrow \mathbf{int}$	contents of registers
$\mu:\mathbb{N} o \mathbf{int}$	contents of storage

Every edge k = (u, lab, v) defines a partial transformation

$$[\![k]\!] = [\![lab]\!]$$

of the state: