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Organization

Dates: Lecture: Monday, 12-14

Tuesday, 12-14

Tutorials: Friday, 12-14

Vesal Vojdani: vojdanig@in.tum.de

Material: slides, recording :-)

simulator environment

Grades: • Bonus for homeworks

• written exam
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Proposed Content:

1. Avoiding redundant computations

→ available expressions

→ constant propagation/array-bound checks

→ code motion

2. Replacing expensive with cheaper computations

→ peep hole optimization

→ inlining

→ reduction of strength

...
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3. Exploiting Hardware

→ Instruction selection

→ Register allocation

→ Scheduling

→ Memory management
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0 Introduction

Observation 1: Intuitive programs often are inefficient.

Example:

void swap (int i, int j) {

int t;

if (a[i] > a[j]) {

t = a[j];

a[j] = a[i];

a[i] = t;

}

}
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Inefficiencies:

• Addresses a[i], a[j] are computed three times :-(

• Values a[i], a[j] are loaded twice :-(

Improvement:

• Use a pointer to traverse the array a;

• store the values of a[i], a[j]!
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void swap (int *p, int *q) {

int t, ai, aj;

ai = *p; aj = *q;

if (ai > aj) {

t = aj;

*q = ai;

*p = t; // t can also be

} // eliminated!

}
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Observation 2:

Higher programming languages (even C :-) abstract from

hardware and efficiency.

It is up to the compiler to adapt intuitively written program to

hardware.

Examples:

. . . Filling of delay slots;

. . . Utilization of special instructions;

. . . Re-organization of memory accesses for better cache

behavior;

. . . Removal of (useless) overflow/range checks.
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Observation 3:

Programm-Improvements need not always be correct :-(

Example:

y = f() + f(); ==⇒ y = 2 * f();

Idea: Save second evaluation of f() ...

Problem: The second evaluation may return a result different

from the first; (e.g., because f() reads from the input

:-)
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Observation 3:

Programm-Improvements need not always be correct :-(

Example:

y = f() + f(); ==⇒ y = 2 * f();

Idea: Save the second evaluation of f() ???

Problem: The second evaluation may return a result different

from the first; (e.g., because f() reads from the input

:-)
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Consequences:

=⇒ Optimizations have assumptions.

=⇒ The assumption must be:

• formalized,

• checked :-)

=⇒ It must be proven that the optimization is correct, i.e.,

preserves the semantics !!!
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Observation 4:

Optimization techniques depend on the programming language:

→ which inefficiencies occur;

→ how analyzable programs are;

→ how difficult/impossible it is to prove correctness ...

Example: Java
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Unavoidable Inefficiencies:

∗ Array-bound checks;

∗ Dynamic method invocation;

∗ Bombastic object organization ...

Analyzability:

+ no pointer arithmetic;

+ no pointer into the stack;

− dynamic class loading;

− reflection, exceptions, threads, ...
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Correctness proofs:

+ more or less well-defined semantics;

− features, features, features;

− libraries with changing behavior ...
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... in this course:

a simple imperative programming language with:

• variables // registers

• R = e; // assignments

• R = M[e]; // loads

• M[e1] = e2; // stores

• if (e) s1 else s2 // conditional branching

• goto L; // no loops :-)
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Note:

• For the beginning, we omit procedures :-)

• External procedures are taken into account through a statement

f () for an unknown procedure f .

==⇒ intra-procedural

==⇒ kind of an intermediate language in which (almost)

everything can be translated.

Example: swap()
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0 : A1 = A0 + 1 ∗ i; // A0 == &a

1 : R1 = M[A1]; // R1 == a[i]

2 : A2 = A0 + 1 ∗ j;

3 : R2 = M[A2]; // R2 == a[ j]

4 : if (R1 > R2) {

5 : A3 = A0 + 1 ∗ j;

6 : t = M[A3];

7 : A4 = A0 + 1 ∗ j;

8 : A5 = A0 + 1 ∗ i;

9 : R3 = M[A5];

10 : M[A4] = R3;

11 : A6 = A0 + 1 ∗ i;

12 : M[A6] = t;

}
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Optimization 1: 1 ∗ R ==⇒ R

Optimization 2: Reuse of subexpressions

A1 == A5 == A6

A2 == A3 == A4

M[A1] == M[A5]

M[A2] == M[A3]

R1 == R3
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By this, we obtain:

A1 = A0 + i;

R1 = M[A1];

A2 = A0 + j;

R2 = M[A2];

if (R1 > R2) {

t = R2;

M[A2] = R1;

M[A1] = t;

}
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Optimization 3: Contraction of chains of assignments :-)

Gain:

before after

+ 6 2

∗ 6 0

load 4 2

store 2 2

> 1 1

= 6 2
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1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then

→ store it after the first computation;

→ replace every further computation through a look-up!

==⇒ Availability of expressions

==⇒ Memoization
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Problem: Identify repeated computations!

Example:

z = 1;

y = M[17];

A : x1 = y + z ;

. . .

B : x2 = y + z ;
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Note:

B is is a repeated computation of the value of y + z , if:

(1) A is always executed before B; and

(2) y and z at B have the same values as at A :-)

==⇒ We need:

→ an operational semantics :-)

→ a method which identifies at least some repeated

computations ...
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Background 1: An Operational Semantics

we choose a small-step operational approach.

Programs are represented as control-flow graphs.

In the example:

start

stop

A1 = A0 + 1 ∗ i;

R1 = M[A1];

A2 = A0 + 1 ∗ j;

R2 = M[A2];

A3 = A0 + 1 ∗ j;

Pos (R1 > R2)Neg (R1 > R2)
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Thereby, represent:

vertex program point

start programm start

stop program exit

edge step of computation

Edge Labelings:

Test : Pos (e) or Neg (e)

Assignment : R = e;

Load : R = M[e];

Store : M[e1] = e2;

Nop : ;
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Thereby, represent:

vertex program point

start programm start

stop program exit

edge step of computation

Edge Labelings:
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Nop : ;
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Computations follow paths.

Computations transform the current state

s = (ρ,µ)

where:

ρ : Vars → int contents of registers

µ : N → int contents of storage

Every edge k = (u, lab, v) defines a partial transformation

[[k]] = [[lab]]

of the state:
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