
Proof:

Ad (1):

Every unknown xi may change its value at most h times :-)

Each time, the list I[xi] is added to W .

Thus, the total number of evaluations is:

≤ n + ∑n
i=1(h · # (I[xi]))

= n + h · ∑n
i=1 # (I[xi])

= n + h · ∑n
i=1 # (Dep fi)

≤ h · ∑n
i=1(1 + # (Dep fi))

= h · N

410



Ad (2):

We only consider the assertion for monotonic fi .

Let D0 denote the least solution. We show:

• D0[xi] ⊒ D[xi] (all the time)

• D[xi] 6⊒ fi eval ==⇒ xi ∈ W (at exit of the loop body)

• On termination, the algo returns a solution :-))

411



Discussion:

• In the example, fewer evaluations of right-hand sides are

required than for RR-iteration :-)

• The algo also works for non-monotonic fi :-)

• For monotonic fi, the algo can be simplified:

D[xi] = D[xi] ⊔ t; ==⇒ D[xi] = D[xi]⊔ t;

• In presence of widening, we replace:

D[xi] = D[xi] ⊔ t; ==⇒ D[xi] = D[xi]⊔– t;

• In presence of Narrowing, we replace:

D[xi] = D[xi] ⊔ t; ==⇒ D[xi] = D[xi]⊓– t;

412



Warning:

• The algorithm relies on explicit dependencies among the

unknowns.

So far in our applications, these were obvious. This need not

always be the case :-(

• We need some strategy for extract which determines the

next unknown to be evaluated.

• It would be ingenious if we always evaluated first and then

accessed the result ... :-)

==⇒ recursive evaluation ...

413



Idea:

→ If during evaluation of fi , an unknown x j is accessed,

x j is first solved recursively. Then xi is added to I[x j]

:-)

eval xi x j = solve x j;

I[x j] = I[x j] ∪ {xi};

D[x j];

→ In order to prevent recursion to descend infinitely, a set

Stable of unknown is maintained for which solve just

looks up their values :-)

Initially, Stable = ∅ ...

414



The Function solve :

solve xi = if (xi 6∈ Stable) {

Stable = Stable ∪ {xi};

t = fi (eval xi);

if (t 6⊑ D[xi]) {

W = I[xi]; I[xi] = ∅;

D[xi] = D[xi] ⊔ t;

Stable = Stable\W;

app solve W;

}

}

415



Helmut Seidl, TU München ;-)

416



Example:

Consider our standard example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

A trace of the fixpoint algorithm then looks as follows:

417


