Proof:

Ad (1):
Every unknown x_{i} may change its value at most h times :-)
Each time, the list $I\left[x_{i}\right]$ is added to W.
Thus, the total number of evaluations is:

$$
\begin{aligned}
& \leq n+\sum_{i=1}^{n}\left(h \cdot \#\left(I\left[x_{i}\right]\right)\right) \\
& =n+h \cdot \sum_{i=1}^{n} \#\left(I\left[x_{i}\right]\right) \\
& =n+h \cdot \sum_{i=1}^{n} \#\left(\operatorname{Dep}_{i}\right) \\
& \leq h \cdot \sum_{i=1}^{n}\left(1+\#\left(\operatorname{Dep}_{i}\right)\right) \\
& =h \cdot N
\end{aligned}
$$

Ad (2):

We only consider the assertion for monotonic f_{i}.
Let D_{0} denote the least solution. We show:

- $\quad D_{0}\left[x_{i}\right] \sqsupseteq D\left[x_{i}\right]$
- $D\left[x_{i}\right] \nexists f_{i}$ eval $\Longrightarrow x_{i} \in W$
(all the time)
(at exit of the loop body)
- On termination, the algo returns a solution :-))

Discussion:

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration :-)
- The algo also works for non-monotonic f_{i} :-)
- For monotonic f_{i}, the algo can be simplified:

$$
D\left[x_{i}\right]=D\left[x_{i}\right] \sqcup t ; \quad D\left[x_{i}\right]=\quad t ;
$$

- In presence of widening, we replace:

$$
D\left[x_{i}\right]=D\left[x_{i}\right] \sqcup t ; \quad D\left[x_{i}\right]=D\left[x_{i}\right] \sqcup t ;
$$

- In presence of Narrowing, we replace:

$$
D\left[x_{i}\right]=D\left[x_{i}\right] \sqcup t ; \quad D\left[x_{i}\right]=D\left[x_{i}\right] \sqcap t ;
$$

Warning:

- The algorithm relies on explicit dependencies among the unknowns.
So far in our applications, these were obvious. This need not always be the case
- We need some strategy for extract which determines the next unknown to be evaluated.
- It would be ingenious if we always evaluated first and then accessed the result ... :-)
\Longrightarrow recursive evaluation ...

Idea:

\rightarrow If during evaluation of f_{i}, an unknown x_{j} is accessed, x_{j} is first solved recursively. Then x_{i} is added to $I\left[x_{j}\right]$:-)

$$
\begin{aligned}
\text { eval } x_{i} x_{j}= & \text { solve } x_{j} ; \\
& I\left[x_{j}\right]=I\left[x_{j}\right] \cup\left\{x_{i}\right\} ; \\
& D\left[x_{j}\right] ;
\end{aligned}
$$

$\rightarrow \quad$ In order to prevent recursion to descend infinitely, a set Stable of unknown is maintained for which solve just looks up their values :-)
Initially, Stable = $\emptyset . .$.

The Function solve :

$$
\begin{aligned}
& \text { solve } x_{i}=\text { if }\left(x_{i} \notin \text { Stable }\right)\{ \\
& \qquad \begin{aligned}
& \text { Stable }=\text { Stable } \cup\left\{x_{i}\right\} ; \\
& t=f_{i}\left(\text { eval } x_{i}\right) ; \\
& \text { if }\left(t \nsubseteq D\left[x_{i}\right]\right)\{ \\
& W=I\left[x_{i}\right] ; \quad I\left[x_{i}\right]=\emptyset ; \\
& D\left[x_{i}\right]=D\left[x_{i}\right] \sqcup t ; \\
& \text { Stable }=\text { Stable } \backslash W ; \\
& \text { app solve } W ; \\
&\}
\end{aligned}
\end{aligned}
$$

Helmut Seidl, TU München ;-)

Example:

Consider our standard example:

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

A trace of the fixpoint algorithm then looks as follows:

