
solve x2 eval x2 x3 solve x3 eval x3 x1 solve x1 eval x1 x3 solve x3

stable!

I[x3 ] = {x1}

⇒ ∅

D[x1 ] = {a}

I[x1 ] = {x3}

⇒ {a}

D[x3 ] = {a, c}

I[x3 ] = ∅

solve x1 eval x1 x3 solve x3

stable!

I[x3 ] = {x1}

⇒ {a, c}

D[x1 ] = {a, c}

I[x1 ] = ∅

solve x3 eval x3 x1 solve x1

stable!

I[x1 ] = {x3}

⇒ {a, c}

ok

I[x3 ] = {x1 , x2}

⇒ {a, c}

D[x2 ] = {a}

418



→ Evaluation starts with an interesting unknown xi (e.g.,

the value at stop )

→ Then automatically all unknowns are evaluated which

influence xi :-)

→ The number of evaluations is often smaller than during

worklist iteration ;-)

→ The algorithm is more complex but does not rely on

pre-computation of variable dependencies :-))

→ It also works if variable dependencies during iteration

change !!!

==⇒ interprocedural analysis

419



1.7 Eliminating Partial Redundancies

Example:

1

0

3

7

6

5

2 4

x = M[a]; y1 = x + 1;

y2 = x + 1;

M[x] = y1 + y2 ;

// x + 1 is evaluated on every path ...

// on one path, however, even twice :-(

420



Goal:

1

0

3

7

6

5

2 4

1

0

3

7

6

5

2 4

y1 = x + 1;

y2 = x + 1;

x = M[a];

M[x] = y1 + y2;

T = x + 1;x = M[a];

M[x] = y1 + T;

T = x + 1;

;

y1 = T;

421



Idea:

(1) Insert assignments Te = e; such that e is available at all

points where the value of e is required.

(2) Thereby spare program points where e either is already

available or will definitely be computed in future.

Expressions with the latter property are called very busy.

(3) Replace the original evaluations of e by accesses to the

variable Te.

==⇒ we require a novel analysis :-))

422



An expression e is called busy along a path π , if the

expression e is evaluated before any of the variables

x ∈ Vars(e) is overwritten.

// backward analysis!

e is called very busy at u , if e is busy along every path

π : u →∗ stop .

423



An expression e is called busy along a path π , if the

expression e is evaluated before any of the variables

x ∈ Vars(e) is overwriten.

// backward analysis!

e is called very busy at u , if e is busy along every path

π : u →∗ stop .

Accordingly, we require:

B[u] =
⋂
{[[π ]]♯ ∅ | π : u →∗ stop}

where for π = k1 . . . km :

[[π ]]♯ = [[k1]]
♯ ◦ . . . ◦ [[km]]♯

424



Our complete lattice is given by:

B = 2Expr\Vars with ⊑ = ⊇

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on

lab , i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯ B = B

[[Pos(e)]]♯ B = [[Neg(e)]]♯ B = B ∪ {e}

[[x = e;]]♯ B = (B\Exprx) ∪ {e}

[[x = M[e];]]♯ B = (B\Exprx) ∪ {e}

[[M[e1] = e2;]]♯ B = B ∪ {e1, e2}

425



These effects are all distributive. Thus, the least solution of the

constraint system yields precisely the MOP— given that stop is

reachable from every program point :-)

Example:

1

0

3

7

6

5

2 4

x = M[a]; y1 = x + 1;

y2 = x + 1;

M[x] = y1 + y2 ;

7 ∅

6 ∅

5 {x + 1}

4 {x + 1}

3 {x + 1}

2 {x + 1}

1 ∅

0 ∅

426



A point u is called safe for e , if e ∈ A[u] ∪ B[u] , i.e., e is

either available or very busy.

Idea:

• We insert computations of e such that e becomes

available at all safe program points :-)

• We insert Te = e; after every edge (u, lab, v) with

e ∈ B[v]\[[lab]]♯A(A[u] ∪ B[u])

427



Transformation 5.1:

v

u

v v

v

u

lab

Te = e; (e ∈ B[v])

Te = e;

lab

(e ∈ B[v]\[[lab]]♯A (A[u] ∪ B[u]))

428



Transformation 5.2:

uu

x = e; x = Te;

// analogously for the other uses of e

// at old edges of the program.

429



Bernhard Steffen, Dortmund Jens Knoop, Wien

430



In the Example:

1

0

3

7

6

5

2 4

x = M[a]; y1 = x + 1;

y2 = x + 1;

M[x] = y1 + y2 ;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x + 1}

3 ∅ {x + 1}

4 {x + 1} {x + 1}

5 ∅ {x + 1}

6 {x + 1} ∅

7 {x + 1} ∅

431



In the Example:

1

0

3

7

6

5

2 4

x = M[a]; y1 = x + 1;

y2 = x + 1;

M[x] = y1 + y2 ;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x + 1}

3 ∅ {x + 1}

4 {x + 1} {x + 1}

5 ∅ {x + 1}

6 {x + 1} ∅

7 {x + 1} ∅

432



Im Example:

0

2

1

3

4

7

6

5

x = M[a];

T = x + 1;

T = x + 1;

y1 = T;

y2 = T;

M[x] = y1 + y2 ;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x + 1}

3 ∅ {x + 1}

4 {x + 1} {x + 1}

5 ∅ {x + 1}

6 {x + 1} ∅

7 {x + 1} ∅

433



Correctness:

Let π denote a path reaching v after which a computation of

an edge with e follows.

Then there is a maximal suffix of π such that for every edge

k = (u, lab, u′) in the suffix:

e ∈ [[lab]]♯A(A[u] ∪ B[u])

B

v

A ∨ B A ∨ B A ∨ BA ∨ B

434



Correctness:

Let π denote a path reaching v after which a computation of

an edge with e follows.

Then there is a maximal suffix of π such that for every edge

k = (u, lab, u′) in the suffix:

e ∈ [[lab]]♯A(A[u] ∪ B[u])

In particular, no variable in e receives a new value :-)

Then Te = e; is inserted before the suffix :-))

T = e;

A A A A A

v

435



We conclude:

• Whenever the value of e is required, e is available :-)

==⇒ correctness of the transformation

• Every T = e; which is inserted into a path corresponds to an

e which is replaced with T :-))

==⇒ non-degradation of the efficiency

436



1.8 Application: Loop-invariant Code

Example:

for (i = 0; i < n; i++)

a[i] = b + 3;

// The expression b + 3 is recomputed in every iteration :-(

// This should be avoided :-)

437



The Control-flow Graph:

3

2

4

5

7

6

0

1

i = 0;

Neg(i < n) Pos(i < n)

y = b + 3;

A1 = A + i;

i = i + 1;

M[A1] = y;

438



Warning: T = b + 3; may not be placed before the loop :

3

4

5

7

6

2

1

0

i = 0;

Neg(i < n) Pos(i < n)

A1 = A + i;

i = i + 1;

T = b + 3;

y = T;

M[A1] = y;

==⇒ There is no decent place for T = b + 3; :-(

439



Idea: Transform into a do-while-loop ...

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A + i;

i = i + 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b + 3;

M[A1] = y;

440



... now there is a place for T = e; :-)

3

2

4

5

67

0

1

i = 0;

A1 = A + i;

i = i + 1;

Neg(i < n) Pos(i < n)

Neg(i < n)

Pos(i < n)

T = b + 3;

y = T;

M[A1] = y;

441



Application of T5 (PRE) :

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A + i;

i = i + 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b + 3;

M[A1] = y;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {b + 3}

3 {b + 3} ∅

4 {b + 3} ∅

5 {b + 3} ∅

6 {b + 3} ∅

6 ∅ ∅

7 ∅ ∅

442



Application of T5 (PRE) :

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A + i;

i = i + 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b + 3;

M[A1] = y;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {b + 3}

3 {b + 3} ∅

4 {b + 3} ∅

5 {b + 3} ∅

6 {b + 3} ∅

6 ∅ ∅

7 ∅ ∅

443



Conclusion:

• Elimination of partial redundancies may move loop-invariant

code out of the loop :-))

• This only works properly for do-while-loops :-(

• To optimize other loops, we transform them into

do-while-loops before-hand:

while (b) stmt ==⇒ if (b)

do stmt

while (b);

==⇒ Loop Rotation

444



Problem:

If we do not have the source program at hand, we must

re-construct potential loop headers ;-)

==⇒ Pre-dominators

u pre-dominates v , if every path π : start →∗ v contains u.

We write: u ⇒ v .

“⇒” is reflexive, transitive and anti-symmetric :-)

445



Computation:

We collect the nodes along paths by means of the analysis:

P = 2Nodes , ⊑ = ⊇

[[(_, _, v)]]♯ P = P ∪ {v}

Then the set P [v] of pre-dominators is given by:

P [v] =
⋂
{[[π ]]♯ {start} | π : start →∗ v}

446



Since [[k]]♯ are distributive, the P [v] can computed by means

of fixpoint iteration :-)

Example:

3

2

4

5

0

1

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

447



The partial ordering “⇒” in the example:

3

2

4

0

1

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

448



Apparently, the result is a tree :-)

In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:

there are u1 6= u2 which immediately pre-dominate v.

If u1 ⇒ u2 then u1 not immediate.

Consequently, u1, u2 are incomparable :-)

449



Now for every π : start →∗ v :

π = π1 π2 with π1 : start →∗ u1

π2 : u1 →∗ v

If, however, u1, u2 are incomparable, then there is path:

start →∗ v avoiding u2 :

start u1

u2 u2

v

450



Now for every π : start →∗ v :

π = π1 π2 with π1 : start →∗ u1

π2 : u1 →∗ v

If, however, u1, u2 are incomparable, then there is path:

start →∗ v avoiding u2 :

start u1

u2u2

v

451



Observation:

The loop head of a while-loop pre-dominates every node in the

body.

A back edge from the exit u to the loop head v can be

identified through

v ∈ P [u]

:-)

Accordingly, we define:

452



Transformation 6:

u

v

uu2 u2

lab

Pos (e)Neg (e)

v

lab

Pos (e)Neg (e)

Neg (e) Pos (e)

u2, v ∈ P [u]

u1 6∈ P [u]

u1 u1

We duplicate the entry check to all back edges :-)

453



... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A + i;

i = i + 1;

y = b + 3;

M[A1] = y;

454



... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A + i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6

i = i + 1;

y = b + 3;

M[A1] = y;

455



... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A + i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6

i = i + 1;

M[A1] = y;

y = b + 3;

456



... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

y = b + 3;

A1 = A + i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6

i = i + 1;

Pos(i < n)Neg(i < n)

M[A1] = y;

457



Warning:

There are unusual loops which cannot be rotated:

3

2

0

4

1

3

2

0

1

4

Pre-dominators:

458



... but also common ones which cannot be rotated:

3

2

4

5

0

1

3

2

4

0

1

5

Here, the complete block between back edge and conditional jump

should be duplicated :-(

459



... but also common ones which cannot be rotated:

3

2

4

5

0

1

3

2

4

0

1

5

Here, the complete block between back edge and conditional jump

should be duplicated :-(

460



... but also common ones which cannot be rotated:

3

2

4

5

0

1

5

3

2

4

1

0

Here, the complete block between back edge and conditional jump

should be duplicated :-(

461


