$$
\begin{aligned}
& \text { solve } x_{2} \\
& \text { eval } x_{2} x_{3} \\
& \text { solve } x_{3} \\
& \text { eval } x_{3} x_{1} \\
& \text { solve } x_{1} \\
& \text { eval } x_{1} x_{3} \\
& \text { solve } x_{3} \\
& \text { stable! } \\
& I\left[x_{3}\right]=\left\{x_{1}\right\} \\
& \Rightarrow \quad \emptyset \\
& D\left[x_{1}\right]=\{a\} \\
& I\left[x_{1}\right]=\left\{x_{3}\right\} \\
& \Rightarrow \quad\{a\} \\
& \begin{array}{l}
D\left[x_{3}\right]=\{a, c\} \\
I\left[x_{3}\right]=\emptyset
\end{array} \\
& \text { solve } x_{1} \\
& \text { eval } x_{1} x \\
& \text { solve } x_{3} \\
& \text { stable! } \\
& I\left[x_{3}\right]=\left\{x_{1}\right\} \\
& \Rightarrow \quad\{a, c\} \\
& D\left[x_{1}\right]=\{a, c\} \\
& I\left[x_{1}\right]=\emptyset \\
& \text { solve } x_{3} \\
& \text { eval } x_{3} x_{1} \\
& \text { solve } x_{1} \\
& \text { stable! } \\
& I\left[x_{1}\right]=\left\{x_{3}\right\} \\
& \Rightarrow \quad\{a, c\}
\end{aligned}
$$

$\rightarrow \quad$ Evaluation starts with an interesting unknown $x_{i} \quad$ (e.g., the value at stop)
$\rightarrow \quad$ Then automatically all unknowns are evaluated which influence x_{i} :-)
$\rightarrow \quad$ The number of evaluations is often smaller than during worklist iteration ;-)
$\rightarrow \quad$ The algorithm is more complex but does not rely on pre-computation of variable dependencies :-))
$\rightarrow \quad$ It also works if variable dependencies during iteration change !!!
$\Longrightarrow \quad$ interprocedural analysis

1.7 Eliminating Partial Redundancies

Example:

// $\quad x+1$ is evaluated on every path
// on one path, however, even twice

Goal:

Idea:

(1) Insert assignments $T_{e}=e$; such that e is available at all points where the value of e is required.
(2) Thereby spare program points where e either is already available or will definitely be computed in future.

Expressions with the latter property are called very busy.
(3) Replace the original evaluations of e by accesses to the variable T_{e}.

An expression e is called busy along a path π, if the expression e is evaluated before any of the variables $x \in \operatorname{Vars}(e)$ is overwritten.
// backward analysis!
e is called very busy at u, if e is busy along every path $\pi: u \rightarrow{ }^{*}$ stop .

An expression e is called busy along a path π, if the expression e is evaluated before any of the variables $x \in \operatorname{Vars}(e)$ is overwriten.

// backward analysis!

e is called very busy at u, if e is busy along every path $\pi: u \rightarrow^{*}$ stop .

Accordingly, we require:

$$
\mathcal{B}[u]=\bigcap\left\{\llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi: u \rightarrow^{*} \text { stop }\right\}
$$

where for $\pi=k_{1} \ldots k_{m}$:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{1} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{m} \rrbracket^{\sharp}
$$

Our complete lattice is given by:

$$
\mathbb{B}=2^{\text {Expr } \backslash \text { Vars }} \quad \text { with } \quad \sqsubseteq=\supseteq
$$

The effect $\llbracket k \rrbracket^{\#}$ of an edge $k=(u, l a b, v)$ only depends on lab, i.e., $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ where:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} B & =B \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} B & =\llbracket N e g(e) \rrbracket^{\sharp} B \quad=B \cup\{e\} \\
\llbracket x=e ; \rrbracket^{\sharp} B & =\left(B \backslash E^{\sharp} r_{x}\right) \cup\{e\} \\
\llbracket x=M[e] ; \rrbracket^{\sharp} B & =\left(B \backslash E x p r_{x}\right) \cup\{e\} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp B} & =B \cup\left\{e_{1}, e_{2}\right\}
\end{array}
$$

These effects are all distributive. Thus, the least solution of the constraint system yields precisely the MOP — given that stop is reachable from every program point :-)

Example:

7	\emptyset
6	\emptyset
5	$\{x+1\}$
4	$\{x+1\}$
3	$\{x+1\}$
2	$\{x+1\}$
1	\emptyset
0	\emptyset

A point u is called safe for e, if $e \in \mathcal{A}[u] \cup \mathcal{B}[u]$, i.e., e is either available or very busy.

Idea:

- We insert computations of e such that e becomes available at all safe program points :-)
- We insert $T_{e}=e$; after every edge $(u, l a b, v)$ with

$$
e \in \mathcal{B}[v] \backslash \llbracket l a b \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[u] \cup \mathcal{B}[u])
$$

Transformation 5.1:

Transformation 5.2:

// analogously for the other uses of e at old edges of the program.

Bernhard Steffen, Dortmund

Jens Knoop, Wien

In the Example:

In the Example:

Im Example:

	\mathcal{A}	\mathcal{B}
0	\emptyset	\emptyset
1	\emptyset	\emptyset
2	\emptyset	$\{x+1\}$
3	\emptyset	$\{x+1\}$
4	$\{x+1\}$	$\{x+1\}$
5	\emptyset	$\{x+1\}$
6	$\{x+1\}$	\emptyset
7	$\{x+1\}$	\emptyset

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge $k=\left(u, l a b, u^{\prime}\right) \quad$ in the suffix:

$$
e \in \llbracket l a b \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[u] \cup \mathcal{B}[u])
$$

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.
Then there is a maximal suffix of π such that for every edge $k=\left(u, l a b, u^{\prime}\right) \quad$ in the suffix:

$$
e \in \llbracket l a b \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[u] \cup \mathcal{B}[u])
$$

In particular, no variable in e receives a new value :-)
Then $T_{e}=e$; is inserted before the suffix :-))

We conclude:

- Whenever the value of e is required, e is available :-) $\Longrightarrow \quad$ correctness of the transformation
- Every $T=e$; which is inserted into a path corresponds to an e which is replaced with $T \quad:-)$)
$\Longrightarrow \quad$ non-degradation of the efficiency

1.8 Application: Loop-invariant Code

Example:

$$
\begin{gathered}
\text { for }(i=0 ; i<n ; i++) \\
a[i]=b+3 ;
\end{gathered}
$$

// The expression $b+3$ is recomputed in every iteration
// This should be avoided :-)

The Control-flow Graph:

Warning: $T=b+3 ;$ may not be placed before the loop :

\Longrightarrow There is no decent place for $T=b+3$; :-(

Idea: Transform into a do-while-loop ...

... now there is a place for $\quad T=e ; \quad:-)$

Application of T5 (PRE):

	\mathcal{A}	\mathcal{B}
0	\emptyset	\emptyset
1	\emptyset	\emptyset
2	\emptyset	$\{b+3\}$
3	$\{b+3\}$	\emptyset
4	$\{b+3\}$	\emptyset
5	$\{b+3\}$	\emptyset
6	$\{b+3\}$	\emptyset
6	\emptyset	\emptyset
7	\emptyset	\emptyset

Application of T5 (PRE):

	\mathcal{A}	\mathcal{B}
0	\emptyset	\emptyset
1	\emptyset	\emptyset
2	\emptyset	$\{b+3\}$
3	$\{b+3\}$	\emptyset
4	$\{b+3\}$	\emptyset
5	$\{b+3\}$	\emptyset
6	$\{b+3\}$	\emptyset
6	\emptyset	\emptyset
7	\emptyset	\emptyset

Conclusion:

- Elimination of partial redundancies may move loop-invariant code out of the loop :-))
- This only works properly for do-while-loops
- To optimize other loops, we transform them into do-while-loops before-hand:

$$
\begin{aligned}
\text { while }(b) \text { stmt } & \Longrightarrow \quad \text { if }(b) \\
& \begin{array}{l}
\text { do stmt } \\
\\
\\
\text { while }(b) ;
\end{array} \\
& \\
& \text { Loop Rotation }
\end{aligned}
$$

Problem:

If we do not have the source program at hand, we must re-construct potential loop headers ;-)

$\Longrightarrow \quad$ Pre-dominators

u pre-dominates v, if every path $\pi:$ start $\rightarrow^{*} v$ contains u.
We write: $u \Rightarrow v$.
$" \Rightarrow$ " is reflexive, transitive and anti-symmetric :-)

Computation:

We collect the nodes along paths by means of the analysis:

$$
\begin{gathered}
\mathbb{P}=2^{\text {Nodes }}, \quad \sqsubseteq=\supseteq \\
\llbracket(\ldots,-v) \rrbracket^{\sharp} P=P \cup\{v\}
\end{gathered}
$$

Then the set $\mathcal{P}[v]$ of pre-dominators is given by:

$$
\mathcal{P}[v]=\bigcap\left\{\llbracket \pi \rrbracket^{\sharp}\{\text { start }\} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Since $\quad \llbracket k \rrbracket^{\sharp}$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration :-)

Example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

The partial ordering $" \Rightarrow$ " in the example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

Apparently, the result is a tree :-)
In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:
there are $\quad u_{1} \neq u_{2}$ which immediately pre-dominate v.
If $u_{1} \Rightarrow u_{2}$ then u_{1} not immediate.
Consequently, u_{1}, u_{2} are incomparable :-)

Now for every $\pi:$ start $\rightarrow^{*} v$:

$$
\begin{array}{ll}
\pi=\pi_{1} \pi_{2} \quad \text { with } \quad & \pi_{1}: \text { start } \rightarrow^{*} u_{1} \\
& \pi_{2}: u_{1} \rightarrow^{*} v
\end{array}
$$

If, however, u_{1}, u_{2} are incomparable, then there is path: start $\rightarrow^{*} v$ avoiding u_{2} :

Now for every $\pi:$ start $\rightarrow^{*} v$:

$$
\begin{array}{ll}
\pi=\pi_{1} \pi_{2} \quad \text { with } \quad & \pi_{1}: \text { start } \rightarrow^{*} u_{1} \\
& \pi_{2}: u_{1} \rightarrow^{*} v
\end{array}
$$

If, however, u_{1}, u_{2} are incomparable, then there is path: start $\rightarrow^{*} v$ avoiding u_{2} :

Observation:

The loop head of a while-loop pre-dominates every node in the body.

A back edge from the exit u to the loop head v can be identified through

$$
v \in \mathcal{P}[u]
$$

:-)

Accordingly, we define:

Transformation 6:

We duplicate the entry check to all back edges :-)
... in the Example:

... in the Example:

... in the Example:

... in the Example:

Warning:

There are unusual loops which cannot be rotated:

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated
... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated
... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated

