solve x5

Dlxz] = {a}

eval x2 x3

I[x3] = {x1, 22}

= {a,c}

solve x3

D[x3] = {a,c}

I[X3] :0

solve x7

D[x1] = {a,c}

I[xl] :@

solve x3

ok

eval x3 x1 solve x1 eval x1 x3 solve x3
stable!
I[x3] = {x1}
= 0
Dlx1] = {a}
I[x1] = {x3}
= {a}
eval x1 x3 solve x3
stable!
I[x3] = {x1}
= {a,c}
eval x3 x1 solve x7
stable!
Ix1] = {x3}
= {a,c}

418

Evaluation starts with an interesting unknown x; (e.g.,
the value at stop)

Then automatically all unknowns are evaluated which
influence x; :-)

The number of evaluations is often smaller than during
worklist iteration ;-)

The algorithm is more complex but does not rely on
pre-computation of variable dependencies :-))

It also works if variable dependencies during iteration
change !!!

— interprocedural analysis

419

1.7 Eliminating Partial Redundancies

Example:

// x+1 isevaluated on every path

// on one path, however, even twice :-(

420

Goal:

421

Idea:

(1)

(2)

(3)

Insert assignments T, = ¢; such that ¢ is available at all
points where the value of ¢ is required.

Thereby spare program points where ¢ either is already
available or will definitely be computed in future.

Expressions with the latter property are called very busy.

Replace the original evaluations of ¢ by accesses to the
variable T,.

— we require a novel analysis :-))

422

An expression ¢ is called busy along a path 7, if the
expression ¢ isevaluated before any of the variables
x € Vars(e) is overwritten.

// backward analysis!

e iscalled very busyat u,if ¢ isbusy alongevery path
7T . u —* stop .

423

An expression ¢ is called busy along a path 7, if the
expression ¢ isevaluated before any of the variables
x € Vars(e) is overwriten.

// backward analysis!

e 1iscalled very busyat u,if ¢ isbusy along every path
7T 1 u —* stop .

Accordingly, we require:

Blu] = (WAL 0| 7:u—" stop}

where for mw=ky...k,,:

[7]* = [ki]*o...o0[ku]*

424

Our complete lattice is given by:

B — 2Expr\Vars

with C = DO

The effect [k]* ofanedge k= (u,lab,v) only depends on
lab ,i.e., [k]* = [lab]* where:

[1* B

[Pos(e)]* B

[x =¢]*B

[x = Mle|;]* B
[Mle:] = ex;] B

B
[Neg(e)]* B = BU{e}
(B\Expr,) U {e}

(B\Expr,)U{e}
BU{ei, e}

425

These effects are all distributive. Thus, the least solution of the
constraint system yields precisely the MOP — given that stop is
reachable from every program point :-)

Example:

{x+1}
{x+1}
{x+1}
{x+1}

S|P I DN|[W |00 |]

426

A point u iscalled safe for ¢,if e e Alu]UBJu],ie.,
either available or very busy.

Idea:

e Weinsert computations of ¢ suchthat e becomes
available at all safe program points :-)

e Weinsert T, = ¢; after every edge (u, lab, v) with

e € Blo]\[lab]F,(Alu] U B[u))

427

e

1S

Transformation 5.1:

imb —) lab

T, =¢; (e€ Blo]\[lab]% (Alu] UB[u]))

\@ T.=¢;, (e € Blv])

428

Transformation 5.2:

// analogously for the other uses of ¢

// atold edges of the program.

429

Bernhard Steffen, Dortmund Jens Knoop, Wien

430

In the Example:

=S| &

{x+1}

1} | {x+1}

A
0
0
0 {x+1}
0
4
0

{x+1}

N[O |Gl kW (N =] O
—~—
=

431

In the Example:

=S| &

{x+1}

1} | {x+1}

A
0
0
0 {x+1}
0
4
0

{x+1}

N[O |Gl kW (N =] O
—~—
=

432

Im Example:

433

A B
0) 0
1 0 0
2) {x+1}
3 0 {x+1}
4 | {x+1} | {x+1}
5) {x+1}
6| {x+1})
7| {x+1} 0

Correctness:

Let 7 denote a path reaching v after which a computation of
an edge with e follows.

Then there is a maximal suffix of 7 such that for every edge
k = (u,lab,u") in the suffix:

e € [lab]*(Alu] U Blu])

AVB AVB AVB AVB B

O—0O~-0-0~-0~©

434

Correctness:

Let 7 denote a path reaching v after which a computation of
an edge with e follows.

Then there is a maximal suffix of 7 such that for every edge
k = (u,lab,u") in the suffix:

e € [lab]*(Alu] U Blu])

In particular, no variablein e receives a new value :-)

Then T, =¢e; isinserted before the suffix :-))

R

435

We conclude:

e Whenever the valueof ¢ isrequired, ¢ isavailable :-)

= correctness of the transformation

e Every T = e¢; whichisinserted into a path corresponds to an
e which is replaced with T =)

— non-degradation of the efficiency

436

1.8 Application: Loop-invariant Code

Example:

for (i =0;i < n;i++)
alil =b+3;

// The expression b+ 3 isrecomputed in every iteration :~(
// This should be avoided :-)

437

The Control-flow Graph:

438

Warning: T = b+ 3; may not be placed before the loop :

—— Thereis no decent place for T =043, :~(

439

Idea: Transform intoa do-while-loop ...

Neg(i < n)u Pos(i < n)

440

..now thereisaplacefor T =¢; :-)

1 =0;

Pos(i < n)

Neg(i < n)

Neg(i < n)u Pos(i < n)

441

Application of 15

(PRE) :

Neg(i < n)u

Pos(i < n)

442

N O O O = WO N —» O

SRR SRIE N

{b+3}
{b+3}
{b+3}
{b+3}

SRS ST S S = =J E

W
—

Application of 15

(PRE) :

Neg(i < n)u

Pos(i < n)

443

N O O O = WO N —» O

SRR SRIE N

{b+3}
{b+3}
{b+3}
{b+3}

SRS ST S S = =J E

W
—

Conclusion:

e FElimination of partial redundancies may move loop-invariant
code out of the loop :-))

e This only works properly for do-while-loops :-(

e To optimize other loops, we transform them into
do-while-loops before-hand:

while (b) stmt —— if (D)
do stmt
while (b);

— Loop Rotation

444

Problem:;

If we do not have the source program at hand, we must
re-construct potential loop headers ;-)

= Pre-dominators

u pre-dominates v, if every path 7 :start —* v contains u.
We write: u = 0.

“=" isreflexive, transitive and anti-symmetric :-)

445

Computation:

We collect the nodes along paths by means of the analysis:

P — 2Nodes) C — O

[P = PU{v}

Then the set P[v| of pre-dominators is given by:

Plo) = (=] {start} | 7 : start —* v}

446

Since [[k])* are distributive, the P[v] can computed by means
of fixpoint iteration :-)

Example:

(0) P
{0}

(L) (0,1}
{0,1,2)
{0,1,2,3)
{0, 1,2,3, 4}
{0,1,5)

©

G| W I~ |O

o

447

The partial ordering “=" in the example:

10}

10,1}

{0,1,2}

{0,1,2,3}

{0,1,2,3,4}

G W I~k |O

{0,1,5}

448

Apparently, the result is a tree :-)

In fact, we have:

Theorem:

Every node © has at most one immediate pre-dominator.

Proof:

Assume:

there are 17 # u, which immediately pre-dominate v.
If uy=u, then wu; notimmediate.

Consequently, 1u;,u, areincomparable :-)

449

Now for every 7 :start —* v :

T = 711 T with 711 - start —* 1y

7T2:M1—>*U

If, however, uq,u, areincomparable, then there is path:
start —* v avoiding u;:

450

Now for every 7 :start —* v :

7T = 71 T with 71y - start —*

7T21M1—>*U

If, however, uy,u, areincomparable, then there is path:
start —* v avoiding uy:

451

Observation:

The loop head of a while-loop pre-dominates every node in the
body.

A back edge from the exit u to theloop head ©v canbe
identified through

v € Plu]

Accordingly, we define:

452

Transformation 6:

uy & Plul
Neg (&g % uz,v e P[] Neg() Pos (
Neg (e () Pos (?

We duplicate the entry check to all back edges :-)

453

... In the Example:

454

... In the Example:

1 =0;
o
Neg(i < n) Pos(i < n)

@ 0,1,2,3,4,5,6

455

... In the Example:

1 =0;
ok
Neg(i < n) Pos(i < n)

@ 0,1,2,3,4,5,6

456

... In the Example:

1 =

Q 0,1

Neg(i < n) Pos(i < n)

457

Warning:

There are unusual loops which cannot be rotated:

Q Pre-dominators: @
3 ©

(@

458

... but also common ones which cannot be rotated:

& ©
© 3
4 ®

Here, the complete block between back edge and conditional jump
should be duplicated :-(

459

... but also common ones which cannot be rotated:

& ©
© 3
4 ®

Here, the complete block between back edge and conditional jump
should be duplicated :-(

460

... but also common ones which cannot be rotated:

& ; @.e

4 O~@

Here, the complete block between back edge and conditional jump
should be duplicated :-(

461

