solve
$$\mathbf{x}_2$$
 eval $\mathbf{x}_2 \mathbf{x}_3$ solve \mathbf{x}_3 eval $\mathbf{x}_3 \mathbf{x}_1$ solve \mathbf{x}_1 eval $\mathbf{x}_1 \mathbf{x}_3$ solve \mathbf{x}_3 stable!

$$I[\mathbf{x}_1] = \{\mathbf{x}_3\}$$

$$\Rightarrow \{a\}$$

$$D[\mathbf{x}_1] = \{a\}$$

$$I[\mathbf{x}_3] = \{a, c\}$$

$$I[\mathbf{x}_3] = \{a, c\}$$

$$I[\mathbf{x}_3] = \{x_1\}$$

$$\Rightarrow \{a, c\}$$

$$I[\mathbf{x}_1] = \{x_3\}$$

$$a = \{a, c\}$$

$$I[\mathbf{x}_1] = \{x_3\}$$

$$a = \{a, c\}$$

$$I[\mathbf{x}_1] = \{x_3\}$$

$$a = \{a, c\}$$

$$I[\mathbf{x}_2] = \{a\}$$

$$I[\mathbf{x}_2] = \{a\}$$

- → Evaluation starts with an interesting unknown x_i (e.g., the value at *stop*)
- \rightarrow Then automatically all unknowns are evaluated which influence x_i :-)
- → The number of evaluations is often smaller than during worklist iteration ;-)
- → The algorithm is more complex but does not rely on pre-computation of variable dependencies :-))
- → It also works if variable dependencies during iteration change !!!

 \implies interprocedural analysis

1.7 Eliminating Partial Redundancies

Example:

//x + 1 is evaluated on every path...//on one path, however, even twice:-(

Goal:

Idea:

- (1) Insert assignments $T_e = e$; such that e is available at all points where the value of e is required.
- (2) Thereby spare program points where *e* either is already available or will definitely be computed in future.
 Expressions with the latter property are called very busy.
- (3) Replace the original evaluations of e by accesses to the variable T_e .

we require a novel analysis :-))

An expression *e* is called **busy** along a path π , if the expression *e* is evaluated before any of the variables $x \in Vars(e)$ is overwritten.

// backward analysis!

e is called very busy at *u*, if *e* is busy along every path $\pi: u \rightarrow^* stop$.

An expression *e* is called **busy** along a path π , if the expression *e* is evaluated before any of the variables $x \in Vars(e)$ is overwriten.

// backward analysis!

e is called very busy at *u*, if *e* is busy along every path $\pi: u \rightarrow^* stop$.

Accordingly, we require:

$$\mathcal{B}[u] = \bigcap \{ \llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi : u \to^{*} stop \}$$

where for $\pi = k_1 \dots k_m$:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_m \rrbracket^{\sharp}$$

Our complete lattice is given by:

$$\mathbb{B} = 2^{Expr \setminus Vars} \qquad \text{with} \quad \sqsubseteq = \supseteq$$

The effect $[\![k]\!]^{\sharp}$ of an edge k = (u, lab, v) only depends on *lab*, i.e., $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ where:

$$\llbracket [:] \ ^{\sharp} B = B$$

$$\llbracket Pos(e) \rrbracket^{\sharp} B = \llbracket Neg(e) \rrbracket^{\sharp} B = B \cup \{e\}$$

$$\llbracket x = e; \rrbracket^{\sharp} B = (B \setminus Expr_{x}) \cup \{e\}$$

$$\llbracket x = M[e]; \rrbracket^{\sharp} B = (B \setminus Expr_{x}) \cup \{e\}$$

$$\llbracket M[e_{1}] = e_{2}; \rrbracket^{\sharp} B = B \cup \{e_{1}, e_{2}\}$$

These effects are all distributive. Thus, the least solution of the constraint system yields precisely the MOP — given that *stop* is reachable from every program point :-)

Example:

7	Ø
6	Ø
5	${x+1}$
4	${x+1}$
3	${x+1}$
2	${x+1}$
1	Ø
0	Ø

A point u is called safe for e, if $e \in \mathcal{A}[u] \cup \mathcal{B}[u]$, i.e., e is either available or very busy.

Idea:

- We insert computations of *e* such that *e* becomes available at all safe program points :-)
- We insert $T_e = e$; after every edge (u, lab, v) with

 $e \in \mathcal{B}[\boldsymbol{v}] \setminus \llbracket lab \rrbracket^{\sharp}_{\mathcal{A}}(\mathcal{A}[\boldsymbol{u}] \cup \mathcal{B}[\boldsymbol{u}])$

Transformation 5.1:

Transformation 5.2:

Bernhard Steffen, Dortmund

Jens Knoop, Wien

In the Example:

	\mathcal{A}	${\cal B}$
0	Ø	Ø
1	Ø	Ø
2	Ø	${x+1}$
3	Ø	${x+1}$
4	${x+1}$	${x+1}$
5	Ø	${x+1}$
6	${x+1}$	Ø
7	${x+1}$	Ø

In the Example:

	\mathcal{A}	${\cal B}$
0	Ø	Ø
1	Ø	Ø
2	Ø	${x+1}$
3	Ø	${x+1}$
4	${x+1}$	${x+1}$
5	Ø	${x+1}$
6	${x+1}$	Ø
7	${x+1}$	Ø

Im Example:

	\mathcal{A}	${\mathcal B}$
0	Ø	Ø
1	Ø	Ø
2	Ø	${x+1}$
3	Ø	${x+1}$
4	${x+1}$	${x+1}$
5	Ø	${x+1}$
6	${x+1}$	Ø
7	$\overline{\{x+1\}}$	Ø

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge k = (u, lab, u') in the suffix:

 $e \in \llbracket lab \rrbracket^{\sharp}_{\mathcal{A}}(\mathcal{A}[\boldsymbol{u}] \cup \mathcal{B}[\boldsymbol{u}])$

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge k = (u, lab, u') in the suffix:

 $e \in \llbracket lab \rrbracket^{\sharp}_{\mathcal{A}}(\mathcal{A}[\mathbf{u}] \cup \mathcal{B}[\mathbf{u}])$

In particular, no variable in *e* receives a new value :-) Then $T_e = e$; is inserted before the suffix :-))

$$A \qquad A \qquad A \qquad A \qquad A \qquad A$$

We conclude:

- Whenever the value of *e* is required, *e* is available :-)

 — correctness of the transformation
- Every T = e; which is inserted into a path corresponds to an
 e which is replaced with T :-))

 \implies non-degradation of the efficiency

1.8 Application: Loop-invariant Code

Example:

for
$$(i = 0; i < n; i++)$$

 $a[i] = b + 3;$

//The expression b + 3 is recomputed in every iteration :-(//This should be avoided :-)

The Control-flow Graph:

Warning: T = b + 3; may not be placed before the loop :

There is no decent place for T = b + 3; :-(

Idea: Transform into a do-while-loop ...

... now there is a place for T = e; :-)

Application of T5 (PRE) :

	\mathcal{A}	${\mathcal B}$
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b+3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
6	Ø	Ø
7	Ø	Ø

Application of T5 (PRE) :

	\mathcal{A}	${\mathcal B}$
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b+3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
6	Ø	Ø
7	Ø	Ø

Conclusion:

- Elimination of partial redundancies may move loop-invariant code out of the loop :-))
- This only works properly for **do-while**-loops :-(
- To optimize other loops, we transform them into do-while-loops before-hand:

while (b) stmt \implies if (b) do stmt while (b);

Problem:

If we do not have the source program at hand, we must re-construct potential loop headers ;-)

 \implies Pre-dominators

u pre-dominates *v*, if every path $\pi : start \to^* v$ contains *u*. We write: $u \Rightarrow v$.

" \Rightarrow " is reflexive, transitive and anti-symmetric :-)

Computation:

We collect the nodes along paths by means of the analysis:

$$\mathbb{P} = 2^{Nodes} , \qquad \Box = \supseteq$$
$$[[(_,_,v)]]^{\sharp} P = P \cup \{v\}$$

Then the set $\mathcal{P}[v]$ of pre-dominators is given by:

$$\mathcal{P}[v] = \bigcap\{\llbracket \pi \rrbracket^{\sharp} \{start\} \mid \pi: start \to^{*} v\}$$

Since $[\![k]\!]^{\sharp}$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration :-)

The partial ordering " \Rightarrow " in the example:

Apparently, the result is a tree :-) In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:

there are $u_1 \neq u_2$ which immediately pre-dominate v.

If $u_1 \Rightarrow u_2$ then u_1 not immediate.

Consequently, u_1, u_2 are incomparable :-)

Now for every $\pi : start \rightarrow^* v$:

$$\pi = \pi_1 \ \pi_2$$
 with $\pi_1 : start \to^* u_1$
 $\pi_2 : u_1 \to^* v$

If, however, u_1, u_2 are incomparable, then there is path: *start* $\rightarrow^* v$ avoiding u_2 :

Now for every $\pi : start \rightarrow^* v$:

$$\pi = \pi_1 \pi_2$$
 with $\pi_1 : start \to^* u_1$
 $\pi_2 : u_1 \to^* v$

If, however, u_1, u_2 are incomparable, then there is path: *start* $\rightarrow^* v$ avoiding u_2 :

Observation:

The loop head of a while-loop pre-dominates every node in the body.

A back edge from the exit u to the loop head v can be identified through

 $v \in \mathcal{P}[u]$

:-)

Accordingly, we define:

Transformation 6:

We duplicate the entry check to all back edges :-)

Warning:

There are **unusual** loops which cannot be rotated:

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(