... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

1.9 Eliminating Partially Dead Code

Example:

x + 1 need only be computed along one path ;-(

Idea:

Problem:

- The definition x = e; $(x \notin Vars_e)$ may only be moved to an edge where e is safe ;-)
- The definition must still be available for uses of $x \rightarrow$

We define an analysis which maximally delays computations:

$$\llbracket x = e; \rrbracket^{\sharp} D = \begin{cases} D \setminus (Use_e \cup Def_x) \cup \{x = e;\} & \text{falls} \quad x \notin Vars_e \\ D \setminus (Use_e \cup Def_x) & \text{falls} \quad x \in Vars_e \end{cases}$$

... where:

$$Use_{e} = \{y = e'; | y \in Vars_{e}\}$$
$$Def_{x} = \{y = e'; | y \equiv x \lor x \in Vars_{e'}\}$$

... where:

$$Use_{e} = \{y = e'; | y \in Vars_{e}\}$$
$$Def_{x} = \{y = e'; | y \equiv x \lor x \in Vars_{e'}\}$$

For the remaining edges, we define:

$$\begin{split} \llbracket x &= M[e]; \rrbracket^{\sharp} D &= D \setminus (Use_e \cup Def_x) \\ \llbracket M[e_1] &= e_2; \rrbracket^{\sharp} D &= D \setminus (Use_{e_1} \cup Use_{e_2}) \\ \llbracket \mathsf{Pos}(e) \rrbracket^{\sharp} D &= \llbracket \mathsf{Neg}(e) \rrbracket^{\sharp} D &= D \setminus Use_e \end{split}$$

Warning:

We may move y = e; beyond a join only if y = e; can be delayed along all joining edges:

Here, T = x + 1; cannot be moved beyond 1 !!!

We conclude:

- The partial ordering of the lattice for delayability is given by "⊇".
- At program start: $D_0 = \emptyset$.

Therefore, the sets $\mathcal{D}[u]$ of at u delayable assignments can be computed by solving a system of constraints.

- We delay only assignments *a* where *a a* has the same effect as *a* alone.
- The extra insertions render the original assignments as assignments to dead variables ...

Transformation 7:

Note:

Transformation T7 is only meaningful, if we subsequently eliminate assignments to dead variables by means of transformation T2 :-)

In the example, the partially dead code is eliminated:

Note:

Transformation T7 is only meaningful, if we subsequently eliminate assignments to dead variables by means of transformation T2 :-)

In the example, the partially dead code is eliminated:

Note:

Transformation T7 is only meaningful, if we subsequently eliminate assignments to dead variables by means of transformation T2 :-)

In the example, the partially dead code is eliminated:

Remarks:

- After *T*7, all original assignments y = e; with $y \notin Vars_e$ are assignments to dead variables and thus can always be eliminated :-)
- By this, it can be proven that the transformation is guaranteed to be non-degradating efficiency of the code :-))
- Similar to the elimination of partial redundancies, the transformation can be repeated :-}

Conclusion:

- \rightarrow The design of a meaningful optimization is non-trivial.
- → Many transformations are advantageous only in connection with other optimizations :-)
- \rightarrow The ordering of applied optimizations matters !!
- \rightarrow Some optimizations can be iterated !!!

... a menaingful ordering:

T4	Constant Propagation	
	Interval Analysis	
	Alias Analysis	
T6	Loop Rotation	
T1, T3, T2	Available Expressions	
T2	Dead Variables	
T7, T2	Partially Dead Code	
T5, T3, T2	Partially Redundant Code	

- 2 Replacing Expensive Operations by Cheaper Ones
- 2.1 Reduction of Strength
- (1) Tabulation of Polynomials

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x + a_0$$

	Multiplications	Additions
naive	$\frac{1}{2}n(n+1)$	п
re-use	2n-1	п
Horner-Schema	n	п

Idea:

$$f(x) = (\dots ((a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \dots) \cdot x + a_0$$

(2) Tabulation of a polynomial f(x) of degree n:

- → To recompute f(x) for every argument x is too expensive :-)
- \rightarrow Luckily, the *n*-th differences are constant !!!

 $f(x) = 3x^3 - 5x^2 + 4x + 13$

Here, the *n*-th difference is always

$$\Delta_h^n(f) = n! \cdot a_n \cdot h^n \qquad (h \text{ step width})$$

Costs:

- *n* times evaluation of f;
- $\frac{1}{2} \cdot (n-1) \cdot n$ subtractions to determine the Δ^k ;
- 2n-2 multiplications for computing $\Delta_h^n(f)$;
- *n* additions for every further value :-)

Number of multiplications only depends on n :-))

Simple Case:
$$f(x) = a_1 \cdot x + a_0$$

- ... naturally occurs in many numerical loops :-)
- The first differences are already constant:

$$f\left(x+h\right)-f\left(x\right)=a_{1}\cdot h$$

• Instead of the sequence: $y_i = f(x_0 + i \cdot h), i \ge 0$ we compute: $y_0 = f(x_0), \Delta = a_1 \cdot h$

$$y_i = y_{i-1} + \Delta, \quad i > 0$$

for
$$(i = i_0; i < n; i = i + h)$$
 {
 $A = A_0 + b \cdot i;$
 $M[A] = ...;$ }
}
M[A] = ...;
M[A] = ...;

... or, after loop rotation:

$$i = i_{0};$$

$$i = i_{0};$$

$$i = i_{0};$$

$$i = i_{0};$$

$$M[a] = \dots;$$

$$i = i + h;$$

$$M[A] = \dots;$$

$$i = i + h;$$

$$M[A] = \dots;$$

... and reduction of strength:

$$i = i_{0};$$
if $(i < n)$ {
 $\Delta = b \cdot h;$
 $A = A_{0} + b \cdot i_{0};$
do {
 $M[A] = ...;$
 $i = i + h;$
 $A = A + \Delta;$
} while $(i < n);$
}

$$M[A] = ...;$$

 $M[A] = ...;$
 $M[A] = ...;$

Warning:

- The values *b*, *h*, *A*₀ must not change their values during the loop.
- *i*, *A* may be modified at exactly one position in the loop :-(
- One may try to eliminate the variable *i* altogether :
 - \rightarrow *i* may not be used else-where.
 - → The initialization must be transformed into: $A = A_0 + b \cdot i_0$.
 - → The loop condition i < n must be transformed into: A < N for $N = A_0 + b \cdot n$.
 - \rightarrow *b* must always be different from zero !!!

Approach:

Identify

- ... loops;
- ... iteration variables;
- ... constants;
- ... the matching use structures.

Loops:

... are identified through the node v with back edge $(_, _, v)$:-)

For the sub-graph G_v of the cfg on $\{w \mid v \Rightarrow w\}$, we define: $Loop[v] = \{w \mid w \rightarrow^* v \text{ in } G_v\}$

	${\cal P}$
0	{ 0 }
1	{ 0 , 1 }
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

	\mathcal{P}
0	{ 0 }
1	{ 0 ,1}
2	{0,1,2}
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	{0,1,5}

We are interested in edges which during each iteration are executed exactly once:

Graph-theoretically, this is noot easily expressible :-(

Edges k could be selected such that:

- the sub-graph $G = \text{Loop}[v] \setminus \{(_, _, v)\}$ is connected;
- the graph $G \setminus \{k\}$ is split into two unconnected sub-graphs.

Edges k could be selected such that:

- the sub-graph $G = \text{Loop}[v] \setminus \{(_, _, v)\}$ is connected;
- the graph $G \setminus \{k\}$ is split into two unconnected sub-graphs.

On the level of source programs, this is trivial:

do { $s_1 \dots s_k$ } while (e);

The desired assignments must be among the s_i :-)

Iteration Variable:

i is an iteration variable if the only definition of *i* inside the loop occurs at an edge which separates the body and is of the form:

i = i + h;

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libaral, an expression which only depends on variables which are not modified during the loop :-)

(3) Differences for Sets

Consider the fixpoint computation:

$$x = \emptyset;$$

for $(t = F x; t \not\subseteq x; t = F x;)$
 $x = x \cup t;$

If *F* is distributive, it could be replaced by:

$$x = \emptyset;$$

for $(\Delta = F x; \Delta \neq \emptyset; \Delta = (F \Delta) \setminus x;)$
 $x = x \cup \Delta;$

The function F must only be computed for the smaller sets Δ :-) semi-naive iteration

Instead of the sequence: $\emptyset \subseteq F(\emptyset) \subseteq F^2(\emptyset) \subseteq \dots$ we compute: $\Delta_1 \cup \Delta_2 \cup \dots$ where: $\Delta_{i+1} = F(F^i(\emptyset)) \setminus F^i(\emptyset)$ $= F(\Delta_i) \setminus (\Delta_1 \cup \dots \cup \Delta_i)$ with $\Delta_0 = \emptyset$

Assume that the costs of F x is 1 + #x.

Then the costs sum up to:

naive	$1+2+\ldots+n+n$	_	$\frac{1}{2}n(n+3)$
semi-naive			2 <i>n</i>

where n is the cardinality of the result.

 \implies A linear factor is saved :-)