
... but also common ones which cannot be rotated:

3

2

4

5

0

1

5

3

2

4

1

0

Here, the complete block between back edge and conditional jump

should be duplicated :-(

461

1.9 Eliminating Partially Dead Code

Example:

0

1

2

3

4

T = x + 1;

M[x] = T;

x + 1 need only be computed along one path ;-(

462

Idea:

0

1

2

3

4

0

1

2

3

4

T = x + 1;

M[x] = T; M[x] = T;

T = x + 1;

463

Problem:

• The definition x = e; (x 6∈ Varse) may only be moved to

an edge where e is safe ;-)

• The definition must still be available for uses of x ;-)

==⇒

We define an analysis which maximally delays computations:

[[;]]♯ D =

[[x = e;]]♯ D =

{

D\(Usee ∪Def x) ∪ {x = e;} falls x 6∈ Varse

D\(Usee ∪Def x) falls x ∈ Varse

464

... where:

Usee = {y = e′; | y ∈ Varse}

Def x = {y = e′; | y ≡ x ∨ x ∈ Varse′}

465

... where:

Usee = {y = e′; | y ∈ Varse}

Def x = {y = e′; | y ≡ x ∨ x ∈ Varse′}

For the remaining edges, we define:

[[x = M[e];]]♯ D = D\(Usee ∪Def x)

[[M[e1] = e2;]]♯ D = D\(Usee1 ∪Usee2)

[[Pos(e)]]♯ D = [[Neg(e)]]♯ D = D\Usee

466

Warning:

We may move y = e; beyond a join only if y = e; can be

delayed along all joining edges:

0

1

2

3

4

T = x + 1;

x = M[T];

Here, T = x + 1; cannot be moved beyond 1 !!!

467

We conclude:

• The partial ordering of the lattice for delayability is given by

“⊇”.

• At program start: D0 = ∅.

Therefore, the sets D[u] of at u delayable assignments

can be computed by solving a system of constraints.

• We delay only assignments a where a a has the same

effect as a alone.

• The extra insertions render the original assignments as

assignments to dead variables ...

468

Transformation 7:

v

u

lab lab

v

u

a ∈ D[u]\[[lab]]♯(D[u])

a ∈ [[lab]]♯(D[u])\D[v]

v1 v2

uu

v1 v2

Pos(e)Neg(e)

u

Pos(e)Neg(e)

a ∈ D[u]\[[Pos(e)]]♯(D[u])

a ∈ [[Neg(e)]]♯(D[u])\D[v1] a ∈ [[Pos(e)]]♯(D[u])\D[v2]

469

Note:

Transformation T7 is only meaningful, if we subsequently

eliminate assignments to dead variables by means of

transformation T2 :-)

In the example, the partially dead code is eliminated:

0

1

2

3

4

T = x + 1;

M[x] = T;

D

0 ∅

1 {T = x + 1;}

2 {T = x + 1;}

3 ∅

4 ∅

470

Note:

Transformation T7 is only meaningful, if we subsequently

eliminate assignments to dead variables by means of

transformation T2 :-)

In the example, the partially dead code is eliminated:

0

1

4

2

3

M[x] = T;

T = x + 1;T = x + 1;

T = x + 1;
D

0 ∅

1 {T = x + 1;}

2 {T = x + 1;}

3 ∅

4 ∅

471

Note:

Transformation T7 is only meaningful, if we subsequently

eliminate assignments to dead variables by means of

transformation T2 :-)

In the example, the partially dead code is eliminated:

0

1

4

2

3

M[x] = T;

T = x + 1;

;

;

L

0 {x}

1 {x}

2 {x}

2′ {x, T}

3 ∅

4 ∅

472

Remarks:

• After T7 , all original assignments y = e; with y 6∈ Varse
are assignments to dead variables and thus can always be

eliminated :-)

• By this, it can be proven that the transformation is guaranteed

to be non-degradating efficiency of the code :-))

• Similar to the elimination of partial redundancies, the

transformation can be repeated :-}

473

Conclusion:

→ The design of a meaningful optimization is non-trivial.

→ Many transformations are advantageous only in connection

with other optimizations :-)

→ The ordering of applied optimizations matters !!

→ Some optimizations can be iterated !!!

474

... a menaingful ordering:

T4 Constant Propagation

Interval Analysis

Alias Analysis

T6 Loop Rotation

T1, T3, T2 Available Expressions

T2 Dead Variables

T7, T2 Partially Dead Code

T5, T3, T2 Partially Redundant Code

475

2 Replacing Expensive Operations by

Cheaper Ones

2.1 Reduction of Strength

(1) Tabulation of Polynomials

f (x) = an · x
n + an−1 · x

n−1 + . . . + a1 · x + a0

Multiplications Additions

naive 1
2
n(n + 1) n

re-use 2n− 1 n

Horner-Schema n n

476

Idea:

f (x) = (. . . ((an · x + an−1) · x + an−2) . . .) · x + a0

(2) Tabulation of a polynomial f (x) of degree n :

→ To recompute f (x) for every argument x is too expensive

:-)

→ Luckily, the n-th differences are constant !!!

477

Example: f (x) = 3x3 − 5x2 + 4x + 13

n f (n) ∆ ∆
2

∆
3

0 13 2 8 18

1 15 10 26

2 25 36

3 61

4 . . .

Here, the n-th difference is always

∆
n
h(f) = n! · an · h

n (h step width)

478

Costs:

• n times evaluation of f ;

• 1
2
· (n− 1) · n subtractions to determine the ∆

k ;

• 2n− 2 multiplications for computing ∆
n
h(f);

• n additions for every further value :-)

==⇒

Number of multiplications only depends on n :-))

479

Simple Case: f (x) = a1 · x+ a0

• ... naturally occurs in many numerical loops :-)

• The first differences are already constant:

f (x + h)− f (x) = a1 · h

• Instead of the sequence: yi = f (x0 + i · h) , i ≥ 0

we compute: y0 = f (x0) , ∆ = a1 · h

yi = yi−1 + ∆ , i > 0

480

Example:

for (i = i0; i < n; i = i + h) {

A = A0 + b · i;

M[A] = . . . ;

}

2

0

1

5

6

3

4

i = i0 ;

Pos(i < n)Neg(i < n)

A = A0 + b · i;

i = i + h;

M[A] = . . . ;

481

... or, after loop rotation:

i = i0;

if (i < n) do {

A = A0 + b · i;

M[A] = . . . ;

i = i + h;

} while (i < n);

2

0

5

6

3

4

1
Pos(i < n)Neg(i < n)

i = i0 ;

A = A0 + b · i;

i = i + h;

M[A] = . . . ;

Neg(i < n) Pos(i < n)

482

... and reduction of strength:

i = i0;

if (i < n) {

∆ = b · h;

A = A0 + b · i0;

do {

M[A] = . . . ;

i = i + h;

A = A + ∆;

} while (i < n);

}

2

5

6

3

4

0

1

Neg(i < n) Pos(i < n)

i = i0 ;

Neg(i < n)

Pos(i < n)

M[A] = . . . ;

i = i + h;

A = A + ∆;

∆ = b · h;

A = A0 + b · i;

483

Warning:

• The values b, h, A0 must not change their values during

the loop.

• i, A may be modified at exactly one position in the loop :-(

• One may try to eliminate the variable i altogether :

→ i may not be used else-where.

→ The initialization must be transformed into:

A = A0 + b · i0 .

→ The loop condition i < n must be transformed into:

A < N for N = A0 + b · n .

→ b must always be different from zero !!!

484

Approach:

Identify

. . . loops;

. . . iteration variables;

. . . constants;

. . . the matching use structures.

485

Loops:

... are identified through the node v with back edge (_, _, v)

:-)

For the sub-graph Gv of the cfg on {w | v ⇒ w}, we define:

Loop[v] = {w | w →∗ v in Gv}

486

Example:

3

2

4

5

0

1

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

487

Example:

3

2

4

0

1

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

488

Example:

0

1

2

3

4

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

489

We are interested in edges which during each iteration are

executed exactly once:

u

v

Graph-theoretically, this is noot easily expressible :-(

490

Edges k could be selected such that:

• the sub-graph G = Loop[v]\{(_, _, v)} is connected;

• the graph G\{k} is split into two unconnected sub-graphs.

491

Edges k could be selected such that:

• the sub-graph G = Loop[v]\{(_, _, v)} is connected;

• the graph G\{k} is split into two unconnected sub-graphs.

On the level of source programs, this is trivial:

do { s1 . . . sk

} while (e);

The desired assignments must be among the si :-)

492

Iteration Variable:

i is an iteration variable if the only definition of i inside the loop

occurs at an edge which separates the body and is of the form:

i = i + h;

for some loop constant h .

A loop constant is simply a constant (e.g., 42), or slightly more

libaral, an expression which only depends on variables which are

not modified during the loop :-)

493

(3) Differences for Sets

Consider the fixpoint computation:

x = ∅;

for (t = F x; t 6⊆ x; t = F x;)

x = x ∪ t;

If F is distributive, it could be replaced by:

x = ∅;

for (∆ = F x;∆ 6= ∅; ∆ = (F∆) \ x;)

x = x ∪ ∆;

The function F must only be computed for the smaller sets ∆

:-) semi-naive iteration

494

Instead of the sequence: ∅ ⊆ F (∅) ⊆ F2 (∅) ⊆ . . .

we compute: ∆1 ∪ ∆2 ∪ . . .

where: ∆i+1 = F (Fi(∅))\Fi(∅)

= F (∆i)\(∆1 ∪ . . . ∪ ∆i) with ∆0 = ∅

Assume that the costs of F x is 1 + #x .

Then the costs sum up to:

naive 1 + 2 + . . . + n + n = 1
2
n(n + 3)

semi-naive 2n

where n is the cardinality of the result.

==⇒ A linear factor is saved :-)

495

