2.2 Peephole Optimization

Idea:

- Slide a small window over the program.
- Optimize agressively inside the window, i.e.,
 - \rightarrow Eliminate redundancies!
 - → Replace expensive operations inside the window by cheaper ones!

Examples:

 $x = x + 1; \qquad \Longrightarrow \qquad x + +;$ // given that there is a specific increment instruction :-) $z = y - a + a; \qquad \Longrightarrow \qquad z = y;$ // algebraic simplifications :-) $x = x; \qquad \Longrightarrow \qquad ;$ $x = 0; \qquad \qquad \Longrightarrow \qquad x = x \oplus x;$ $x = 2 \cdot x; \qquad \Longrightarrow \qquad x = x + x;$

Important Subproblem: *nop*-Optimization

- \rightarrow If $(v_1, ;, v)$ is an edge, v_1 has no further out-going edge.
- Consequently, we can identify v_1 and v :-) \rightarrow
- The ordering of the identifications does not matter :-)) \rightarrow

Implementation:

• We construct a function $next : Nodes \rightarrow Nodes$ with:

next
$$u = \begin{cases} next v & \text{if } (u, ;, v) & \text{edge} \\ u & \text{otherwise} \end{cases}$$

Warning: This definition is only recursive if there are ;-loops ???

• We replace every edge:

$$(u, lab, v) \implies (u, lab, next v)$$

... whenever $lab \neq ;$

• All ;-edges are removed ;-)

Example:

next 1	=	1
next 3	=	4
next 5	=	6

Example:

next 1	=	1
next 3	=	4
next 5	=	6

2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linearly arrangement of instructions :-)

Warning:

Not every linearization is equally efficient !!!

Example:

0:

- 1: if (e_1) goto 2;
- 4: halt
- 2: Rumpf
- 3: if (e_2) goto 4; goto 1;

Bad: The loop body is jumped into :-(

Example:

- 0:
- 1: if $(!e_1)$ goto 4;
- 2: Rumpf
- 3: if $(!e_2)$ goto 1;
- 4: halt

// better cache behavior :-)

Idea:

- Assign to each node a temperature!
- always jumps to
 - (1) nodes which have already been handled;
 - (2) colder nodes.
- Temperature \approx nesting-depth

For the computation, we use the pre-dominator tree and strongly connected components ...

... in the Example:

The sub-tree with back edge is hotter ...

More Complicated Example:

More Complicated Example:

More Complicated Example:

Our definition of Loop implies that (detected) loops are necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...

Our definition of Loop implies that (detected) loops are necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...

Summary: The Approach

- (1) For every node, determine a temperature;
- (2) Pre-order-DFS over the CFG;
 - → If an edge leads to a node we already have generated code for, then we insert a jump.
 - → If a node has two successors with different temperature, then we insert a jump to the colder of the two.
 - → If both successors are equally warm, then it does not matter ;-)

2.3 **Procedures**

We extend our mini-programming language by procedures without parameters and procedure calls.

For that, we introduce a new statement:

f();

Every procedure f has a definition:

 $f() \{ stmt^* \}$

Additionally, we distinguish between global and local variables. Program execution starts with the call of a procedure main ().

Example:

 $f() \in \{$ int *a*, ret; main()int b; if $(a \le 1)$ {ret = 1; goto exit; } a = 3;**f**(); b = a;M[17] =ret; a = b - 1;ret = 0;f();} $ret = b \cdot ret;$ exit: }

Such programs can be represented by a **set** of CFGs: one for each procedure ...

... in the Example:

 $f\left(
ight)$ main() 5 0 $\operatorname{Pos}\left(a\leq 1\right)$ Neg ($a \le 1$) *a* = 3; 10*f*(); *b* = *a*; 2 M[17] =ret; a = b - 1;ret = 1;3 fret = 0; *f*(); ret = b * ret;

In order to optimize such programs, we require an extended operational semantics ;-)

Program executions are no longer paths, but forests:

The function $[\![.]\!]$ is extended to computation forests: w: $[\![w]\!]: (Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z}) \to (Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z})$ For a call k = (u, f();, v) we must:

• determine the initial values for the locals:

enter $\rho = \{x \mapsto 0 \mid x \in Locals\} \oplus (\rho|_{Globals})$

• ... combine the new values for the globals with the old values for the locals:

combine
$$(\rho_1, \rho_2) = (\rho_1|_{Locals}) \oplus (\rho_2|_{Globals})$$

• ... evaluate the computation forest inbetween:

$$\begin{bmatrix} k \langle w \rangle \end{bmatrix} (\rho, \mu) = \text{let } (\rho_1, \mu_1) = \llbracket w \rrbracket \text{ (enter } \rho, \mu)$$

in (combine $(\rho, \rho_1), \mu_1$)

Warning:

- In general, **[***w***]** is only partially defined :-)
- Dedicated global/local variables a_i, b_i , ret can be used to simulate specific calling conventions.
- The standard operational semantics relies on configurations which maintain a call stack.
- Computation forests are better suited for the construction of analyses and correctness proofs :-)
- It is an awkward (but useful) exercise to prove the equivalence of the two approaches ...

Configurations:

configuration	 stack imes store
store	 $globals \times \mathbb{N} \to \mathbb{Z}$
locals	 $(Globals \rightarrow \mathbb{Z})$
stack	 $\mathit{frame}\cdot \mathit{frame}^*$
frame	 point × locals
locals	 $(Locals \rightarrow \mathbb{Z})$

A *frame* specifies the local state of computation inside a procedure call :-)

The leftmost frame corresponds to the current call.

Computation steps refer to the current call :-) The novel kinds of steps:

call
$$k = (u, f();, v)$$
 :
 $((u, \rho)) \cdot \sigma, \langle \gamma, \mu \rangle) \implies ((u_f, \{x \to 0 \mid x \in Locals\}) \cdot (v, \rho)) \cdot \sigma, \langle \gamma, \mu \rangle)$
 u_f entry point of f

return:

$$((\mathbf{r}_{f,-}) \cdot \sigma, \langle \gamma, \mu \rangle) \implies (\sigma, \langle \gamma, \mu \rangle)$$

 r_f return point of f

5	$b\mapsto 0$
2	

7	$b \mapsto 3$
2	

5	$b \mapsto 0$
9	$b \mapsto 3$
2	

7	$b\mapsto 2$
9	$b \mapsto 3$
2	

5	$b\mapsto 0$
9	$b\mapsto 2$
9	$b \mapsto 3$
2	

11	$b\mapsto 0$
9	$b \mapsto 2$
9	$b \mapsto 3$
2	

9	$b\mapsto 2$
9	$b \mapsto 3$
2	

11	$b\mapsto 2$
9	$b \mapsto 3$
2	

9	$b \mapsto 3$
2	

11	$b \mapsto 3$
2	

This operational semantics is quite realistic :-)

Costs for a Procedure Call:

Before entering the body: • Creating a stack frame;

- assing of the parameters;
- Saving the registers;
- Saving the return address;
- Jump to the body.

At procedure exit: • Freeing the stack frame.

- Restoring the registers.
- Passing of the result.
- Return behind the call.

 \implies ... quite expensive !!!

1. Idea: Inlining

Copy the procedure body at every call site !!!

Example:

$$abs () \{ max () \{ a_2 = -a_1; & if (a_1 < a_2) \{ ret = a_2; goto _exit; \} max (); & ret = a_1; \\ \} & __exit : \\ \}$$

... yields:

$$abs () \{ a_{2} = -a_{1}; \\ if (a_{1} < a_{2}) \{ ret = a_{2}; goto _exit; \} \\ ret = a_{1}; \\ _exit : \}$$

Problems:

- The copied block may modify the locals of the calling procedure ???
- More general: Multiple use of local variable names may lead to errors.
- Multiple calls of a procedure may lead to code duplication
 :-((
- How can we handle recursion ???

Detection of Recursion:

We construct the call-graph of the program.

In the Examples:

