
2.2 Peephole Optimization

Idea:

• Slide a small window over the program.

• Optimize agressively inside the window, i.e.,

→ Eliminate redundancies!

→ Replace expensive operations inside the window by

cheaper ones!

496



Examples:

x = x + 1; ==⇒ x++;

// given that there is a specific increment instruction :-)

z = y− a + a; ==⇒ z = y;

// algebraic simplifications :-)

x = x; ==⇒ ;

x = 0; ==⇒ x = x⊕ x;

x = 2 · x; ==⇒ x = x + x;

497



Important Subproblem: nop-Optimization

v

u

;

lab

v

u

lab

→ If (v1, ;, v) is an edge, v1 has no further out-going

edge.

→ Consequently, we can identify v1 and v :-)

→ The ordering of the identifications does not matter :-))

498



Implementation:

• We construct a function next : Nodes → Nodes with:

next u =

{

next v if (u, ;, v) edge

u otherwise

Warning: This definition is only recursive if there are

;-loops ???

• We replace every edge:

(u, lab, v) ==⇒ (u, lab, next v)

... whenever lab 6= ;

• All ;-edges are removed ;-)

499



Example:

3

2

4

5

6

1

7

0

;

;

next 1 = 1

next 3 = 4

next 5 = 6

500



Example:

2

4

6

1

7

0

3

5

next 1 = 1

next 3 = 4

next 5 = 6

501



2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linearly

arrangement of instructions :-)

Warning:

Not every linearization is equally efficient !!!

502



Example:

0

1

2

3

4

Pos (e1)Neg (e1)

Pos (e2)

Neg (e2)

0:

1: if (e1) goto 2;

4: halt

2: Rumpf

3: if (e2) goto 4;

goto 1;

Bad: The loop body is jumped into :-(

503



Example:

0

1

2

3

4

Pos (e1)Neg (e1)

Pos (e2)

Neg (e2)

0:

1: if (!e1) goto 4;

2: Rumpf

3: if (!e2) goto 1;

4: halt

goto

// better cache behavior :-)

504



Idea:

• Assign to each node a temperature!

• always jumps to

(1) nodes which have already been handled;

(2) colder nodes.

• Temperature ≈ nesting-depth

For the computation, we use the pre-dominator tree and strongly

connected components ...

505



... in the Example:

0

1

2

3

4

Pos (e1)Neg (e1)

Pos (e2)

Neg (e2)

1

2

3

0

4

The sub-tree with back edge is hotter ...

506



... in the Example:

0

1

2

3

4

Pos (e1)Neg (e1)

Pos (e2)

Neg (e2)

1

1

1

0

0

1

2

3

0

4

507



More Complicated Example:

1

2

0

7

3

4

5

6

3

4

5

6

0

1

27

508



More Complicated Example:

1

2

0

7

3

4

5

6

3

4

5

6

0

1

27

509



More Complicated Example:

1

2

0

7

3

4

5

6

2

1

3

4

5

6

0

1

27

Loop[3]

Loop[1]

510



Our definition of Loop implies that (detected) loops are

necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...

1

2

0

3

4

5

0

1

4 532

511



Our definition of Loop implies that (detected) loops are

necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...

1

2

0

3

4

5

0

1

4 532

2

1

512



Summary: The Approach

(1) For every node, determine a temperature;

(2) Pre-order-DFS over the CFG;

→ If an edge leads to a node we already have generated

code for, then we insert a jump.

→ If a node has two successors with different

temperature, then we insert a jump to the colder of

the two.

→ If both successors are equally warm, then it does not

matter ;-)

513



2.3 Procedures

We extend our mini-programming language by procedures

without parameters and procedure calls.

For that, we introduce a new statement:

f ();

Every procedure f has a definition:

f () { stmt∗ }

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main () .

514



Example:

int a, ret;

main () {

a = 3;

f ();

M[17] = ret;

ret = 0;

}

f () {

int b;

if (a ≤ 1) {ret = 1; goto exit; }

b = a;

a = b− 1;

f ();

ret = b · ret;

exit :

}

Such programs can be represented by a set of CFGs: one for each

procedure ...

515



... in the Example:

0

2

1

3

4

5

6

7

8

9

10

11

main()

a = 3;

f ();

M[17] = ret;

ret = 0;

ret = 1;

f ()

Neg (a ≤ 1) Pos (a ≤ 1)

b = a;

ret = b ∗ ret;

f ();

a = b− 1;

516



In order to optimize such programs, we require an extended

operational semantics ;-)

Program executions are no longer paths, but forests:

f ();

g1(); g2();

517



... in the Example:

43210

9 118765

9 118765

5 10 11

f ()

f ()

f ()

518



The function [[.]] is extended to computation forests: w :

[[w]] : (Vars → Z)× (N → Z) → (Vars → Z)× (N → Z)

For a call k = (u, f ();, v) we must:

• determine the initial values for the locals:

enter ρ = {x 7→ 0 | x ∈ Locals} ⊕ (ρ|Globals)

• ... combine the new values for the globals with the old values

for the locals:

combine (ρ1,ρ2) = (ρ1|Locals)⊕ (ρ2|Globals)

• ... evaluate the computation forest inbetween:

[[k 〈w〉]] (ρ,µ) = let (ρ1,µ1) = [[w]] (enter ρ,µ)

in (combine (ρ,ρ1),µ1)

519



Warning:

• In general, [[w]] is only partially defined :-)

• Dedicated global/local variables ai, bi, ret can be used to

simulate specific calling conventions.

• The standard operational semantics relies on configurations

which maintain a call stack.

• Computation forests are better suited for the construction of

analyses and correctness proofs :-)

• It is an awkward (but useful) exercise to prove the

equivalence of the two approaches ...

520



Configurations:

configuration == stack× store

store == globals×N → Z

locals == (Globals → Z)

stack == frame · frame∗

frame == point× locals

locals == (Locals → Z)

A frame specifies the local state of computation inside a

procedure call :-)

The leftmost frame corresponds to the current call.

521



Computation steps refer to the current call :-)

The novel kinds of steps:

call k = (u, f ();, v) :

( (u,ρ) ·σ , 〈γ,µ〉) =⇒ ( (u f , {x → 0 | x ∈ Locals}) · (v,ρ) ·σ , 〈γ,µ〉)

u f entry point of f

return:

( (r f , _) ·σ , 〈γ,µ〉) =⇒ (σ , 〈γ,µ〉)

r f return point of f

522



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

1

523



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

5 b 7→ 0

524



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

7 b 7→ 3

525



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

5

9 b 7→ 3

b 7→ 0

526



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

9

7

b 7→ 3

b 7→ 2

527



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

5

9

9 b 7→ 3

b 7→ 2

b 7→ 0

528



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

9

9

11

b 7→ 2

b 7→ 3

b 7→ 0

529



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

9

9

b 7→ 3

b 7→ 2

530



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

9

11

b 7→ 3

b 7→ 2

531



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

9 b 7→ 3

532



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

11 b 7→ 3

533



The call stack explicitly implements the DFS traversal through the

computation forest :-)

... in the Example:

2

534



This operational semantics is quite realistic :-)

Costs for a Procedure Call:

Before entering the body: • Creating a stack frame;

• assing of the parameters;

• Saving the registers;

• Saving the return address;

• Jump to the body.

At procedure exit: • Freeing the stack frame.

• Restoring the registers.

• Passing of the result.

• Return behind the call.

==⇒ ... quite expensive !!!

535



1. Idea: Inlining

Copy the procedure body at every call site !!!

Example:

abs () {

a2 = −a1;

max ();

}

max () {

if (a1 < a2) { ret = a2; goto _exit; }

ret = a1;

_exit :

}

536



... yields:

abs () {

a2 = −a1;

if (a1 < a2) { ret = a2; goto _exit; }

ret = a1;

_exit :

}

537



Problems:

• The copied block may modify the locals of the calling

procedure ???

• More general: Multiple use of local variable names may lead

to errors.

• Multiple calls of a procedure may lead to code duplication

:-((

• How can we handle recursion ???

538



Detection of Recursion:

We construct the call-graph of the program.

In the Examples:

main f

abs max

539


