Call-Graph:

e The nodes are the procedures.

e Anedgeconnexts ¢ with /1, wheneverthebodyof ¢
containsa call of /.

Strategies for Inlining:

e Just copy nur leaf-procedures, i.e., procedures without further
calls :-)

e Copy all non-recursive procedures!

... here, we consider just leaf-procedures ;-)
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Transformation 9:

xf=0; (x € Locals)

Kopie
von f
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Note:

e The Nop-edge can be eliminated if the stop-node of f has
no out-going edges ...

o The x; arethe copies of thelocals of the procedure f.

e According to our semantics of procedure calls, these must be
initialized with 0 :-)
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2. Idea: Elimination of Tail Recursion

£O { int b;

if (a0 <1) { ret =ay; goto exit; }
b=ay-ap;
A, = a, — 1;
a1 = b;
f O

_exit :

}

After the procedure call, nothing in the body remains to be done.

— We may directly jump to the beginning :-)

... after having reset the locals to 0.
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.. this yields in the Example:

FO{ it b
_f: if (2, <1) { ret =ay; goto _exit; }
b=a;-ap;
i, = a, — 1;
a, = b;
b=0; goto f;
_exit :

}

// It works, since we have ruled out references to variables!
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Transformation 11:

< — ®
£0; \gx =0; (x € Locals)
fO): \O @ O -
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Warning:

l

l

l

This optimization is crucial for programming languages
without iteration constructs !!!

Duplication of code is not necessary  :-)
No variable renaming is necessary :-)

The optimization may also be profitable for non-recursive
tail calls :-)

The corresponding code may contain jumps from the body
of one procedure into the body of another ?77?
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Background 4: Interprocedural Analysis

So far, we can analyze each procedure separately.

—  The costs are moderate :-)

—  The methods also work in presence of separate compilation

)

— At procedure calls, we must assume the worst case :-(
—  Constant propagation only works for local constants :-((
Question:

How can recursive programs be analyzed ???
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Example: Constant Propagation

main() { int¢; work () {
t =0; if (a1) work();
f (1) M[17] = 3; ret = ay;
1 =t }
work ();

ret = 1 — ret;
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Example: Constant Propagation

work () \

(7)

Neg (al) Pos (611)
()
work();

)
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Example: Constant Propagation

main()
O
t=20;
1
©
a1 = O;

(@)

workg();

% ret = 1;
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workg () \

7

ret = 0;



(1)  Functional Approach:

Let D denote a complete lattice of (abstract) states.

Idea:

Represent the effect of () by a function:

[f]* : D—D
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In order to determine the effect of a calledge k= (u,f ();,v) we
require abstract functions:

enter? - D —D

combine! : D? - D

Then we define:

[kK]* D = combine’ (D, [f]? (enter* D))
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.. for Constant Propagation:

D = (Vars - Z"),
pt if D=1
enter? D =
| D|ciobats @ {x +— 0| x € Locals} otherwise
)
combine? (D1, D) 1 2
L Dl‘Locals P Dz‘czobazs otherwise
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The effects [f]* then can be determined by a system of
constraints over the complete lattice D — D

0]* 3 Id v Eintrittspunkt
[o]F 2 [K[F o [u]? k=(u,_,v) edge
[f1F 2 [stop,]’ stop, end pointof f
[0]F : D — D describes the effect of all prefixes of computation

forests w of a procedure which lead from the entry point to ©

)
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Problems:

e How can we represent functions f : D — D ???

o If #D =o00,then D — D has infinite strictly increasing
chains :~(

Simplification: =~ Copy-Constants

—  Conditions are interpreted as ; :-)

—  Only assignments x =¢; with e € VarsUZ are treated
exactly :-)
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Observation:

—  The effects of assignments are:

[x=¢]f D =

<

(D@{xl—w} if e=ceZ
De{x— (Dy)} if e=ye Vars

Do {x— T} otherwise

— Let V denote the (finite !!!) set of constant right-hand
sides. Then variables may only take values from V' :-))

—  The occurring effects can be taken from

with Dy = (Vars = V'),

—  The complete lattice is huge, but finite !!!
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Improvement:

l

l

Not all functions from Dy — Dy will occur :-)

All occurring functions AD. 1L # M are of the form:

M = {x— (bx Ul ) | x € Vars} where:
MD = {xw (byUl,e,Dy)|x€Vars}  far D# L

Let M denote the set of all these functions. Then for
Ml,Mz e M (M1 7é AD. L 7%— Mz)i

(MiUM)x = (M;x)U (M, x)

For k=#Vars , M hasheight O(k*) :-)
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Improvement (Cont.):

—  Also, composition can be directly implemented:

(MioMy) x = b Ullepy with
b = bU]|l.¢ b
I' = U.o/ L where

M x = b|_||_|y61y
MZZ — bz|_||_|yelzy

—  The effects of assignments then are:

(IdVars@{xHC} if e=ceZ
[x =¢]F =

N\

ldy,s ®{x— y} if e=y €& Vars
| Idvus © {x+— T} otherwise
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... in the Example:

[t = 0]
[a: = £]F

{a, — ay,ret —ret, |t — 0}

= {ﬂ1|—>t

,ret — ret, t +— ¢}

In order to implement the analysis, we additionally must construct
the effectofacall k= (_f();,_)

f:

[ =
H(M) =

enterﬁ X =

H ([]F)

from the effect of a procedure

where:

Id\Lsz S, {x — (M O enterﬁ) ‘Globals
{ X if x € Globals

0 otherwise
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... In the Example:

If [work]* = {a; — ay,ret — a;,t— t}
then H [work]* = Idyy @ {a1 — a1, ret — a1}

= {ay — aj,ret— ay, t— t}

Now we can perform fixpoint iteration :-)
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1

7 | {a1 — ay,ret — ret, t — t}
9| {a1 — ay,ret — ret, t — t}

10 | {ay > ay,ret — ay, t — t}

8 | {a1 — ay,ret — ret, t — t}

{a; — ay,ret — a;,t — t} o
{a; — ay,ret — ret, t — t}

{a; — ay,ret — ay,t — t}
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work () \

Neg (a1) Pos (a7)

work();

,

[(8,...,9)]F o [8]"

2

7 {a; — ay,ret — ret, t— t}

{a; — ay,ret — ay Uret, t +— t}

10 {a; — ay,ret — ay,t — t}

8 {a1 — ay,ret — ret, t — t}

{a; — ay,ret — a;,t — t} o
{a; — ay,ret — ret, t — t}

{a; — ay,ret — ay,t — t}
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