
Call-Graph:

• The nodes are the procedures.

• An edge connexts g with h , whenever the body of g

contains a call of h .

Strategies for Inlining:

• Just copy nur leaf-procedures, i.e., procedures without further

calls :-)

• Copy all non-recursive procedures!

... here, we consider just leaf-procedures ;-)

540

Transformation 9:

u

v

v

u

x f = 0; (x ∈ Locals)

Kopie

von f

;

f ();

541

Note:

• The Nop-edge can be eliminated if the stop-node of f has

no out-going edges ...

• The x f are the copies of the locals of the procedure f .

• According to our semantics of procedure calls, these must be

initialized with 0 :-)

542

2. Idea: Elimination of Tail Recursion

f () { int b;

if (a2 ≤ 1) { ret = a1; goto _exit; }

b = a1 · a2;

a2 = a2 − 1;

a1 = b;

f ();

_exit :

}

After the procedure call, nothing in the body remains to be done.

==⇒ We may directly jump to the beginning :-)

... after having reset the locals to 0.

543

... this yields in the Example:

f () { int b;

_ f : if (a2 ≤ 1) { ret = a1; goto _exit; }

b = a1 · a2;

a2 = a2 − 1;

a1 = b;

b = 0; goto _ f ;

_exit :

}

// It works, since we have ruled out references to variables!

544

Transformation 11:

v

u

f () :v

u

f ();

f () :

x = 0; (x ∈ Locals)

545

Warning:

→ This optimization is crucial for programming languages

without iteration constructs !!!

→ Duplication of code is not necessary :-)

→ No variable renaming is necessary :-)

→ The optimization may also be profitable for non-recursive

tail calls :-)

→ The corresponding code may contain jumps from the body

of one procedure into the body of another ???

546

Background 4: Interprocedural Analysis

So far, we can analyze each procedure separately.

→ The costs are moderate :-)

→ The methods also work in presence of separate compilation

:-)

→ At procedure calls, we must assume the worst case :-(

→ Constant propagation only works for local constants :-((

Question:

How can recursive programs be analyzed ???

547

Example: Constant Propagation

main() { int t;

t = 0;

if (t) M[17] = 3;

a1 = t;

work ();

ret = 1− ret;

}

work() {

if (a1) work();

ret = a1;

}

548

Example: Constant Propagation

7

8

0

4

5

1

2

3

6

ret = 1− ret;

work();

9

10

main()

t = 0;

Pos (t)Neg (t)

M[17] = 3;

a1 = t;

work();

Neg (a1) Pos (a1)

ret = a1;

work ()

549

Example: Constant Propagation

70

4

5

1

3

9

10

6

ret = 1;

main()

t = 0;

2

work0();

work0 ()

8

ret = 0;

a1 = 0;

550

(1) Functional Approach:

Let D denote a complete lattice of (abstract) states.

Idea:

Represent the effect of f () by a function:

[[f]]♯ : D → D

551

Micha Sharir, Tel Aviv University Amir Pnueli, Weizmann Institute

552

In order to determine the effect of a call edge k = (u, f ();, v) we

require abstract functions:

enter♯ : D → D

combine♯ : D2 → D

Then we define:

[[k]]♯ D = combine♯ (D, [[f]]♯ (enter♯ D))

553

... for Constant Propagation:

D = (Vars → Z⊤)⊥

enter♯ D =

{

⊥ if D = ⊥

D|Globals ⊕ {x 7→ 0 | x ∈ Locals} otherwise

combine♯ (D1,D2) =

{

⊥ if D1 = ⊥∨ D2 = ⊥

D1|Locals ⊕ D2|Globals otherwise

554

The effects [[f]]♯ then can be determined by a system of

constraints over the complete lattice D → D :

[[v]]♯ ⊒ Id v Eintrittspunkt

[[v]]♯ ⊒ [[k]]♯ ◦ [[u]]♯ k = (u, _, v) edge

[[f]]♯ ⊒ [[stop f]]
♯ stop f end point of f

[[v]]♯ : D → D describes the effect of all prefixes of computation

forests w of a procedure which lead from the entry point to v

:-)

555

Problems:

• How can we represent functions f : D → D ???

• If #D = ∞ , then D → D has infinite strictly increasing

chains :-(

Simplification: Copy-Constants

→ Conditions are interpreted as ; :-)

→ Only assignments x = e; with e ∈ Vars ∪Z are treated

exactly :-)

556

Observation:

→ The effects of assignments are:

[[x = e;]]♯ D =















D⊕ {x 7→ c} if e = c ∈ Z

D⊕ {x 7→ (D y)} if e = y ∈ Vars

D⊕ {x 7→ ⊤} otherwise

→ Let V denote the (finite !!!) set of constant right-hand

sides. Then variables may only take values from V⊤ :-))

→ The occurring effects can be taken from

D f → D f with D f = (Vars → V
⊤)⊥

→ The complete lattice is huge, but finite !!!

557

Improvement:

→ Not all functions from D f → D f will occur :-)

→ All occurring functions λD.⊥ 6= M are of the form:

M = {x 7→ (bx ⊔
⊔

y∈Ix
y) | x ∈ Vars} where:

M D = {x 7→ (bx ⊔
⊔

y∈Ix D y) | x ∈ Vars} für D 6= ⊥

→ Let M denote the set of all these functions. Then for

M1,M2 ∈ M (M1 6= λ D. ⊥ 6= M2) :

(M1 ⊔ M2) x = (M1 x) ⊔ (M2 x)

→ For k = #Vars , M has height O(k2) :-)

558

Improvement (Cont.):

→ Also, composition can be directly implemented:

(M1 ◦ M2) x = b′ ⊔
⊔

y∈I′ y with

b′ = b ⊔
⊔

z∈I bz

I′ =
⋃

z∈I Iz where

M1 x = b ⊔
⊔

y∈I y

M2 z = bz ⊔
⊔

y∈Iz y

→ The effects of assignments then are:

[[x = e;]]♯ =















IdVars ⊕ {x 7→ c} if e = c ∈ Z

IdVars ⊕ {x 7→ y} if e = y ∈ Vars

IdVars ⊕ {x 7→ ⊤} otherwise

559

... in the Example:

[[t = 0;]]♯ = {a1 7→ a1, ret 7→ ret, t 7→ 0 }

[[a1 = t;]]♯ = { a1 7→ t , ret 7→ ret, t 7→ t}

In order to implement the analysis, we additionally must construct

the effect of a call k = (_, f ();, _) from the effect of a procedure

f :

[[k]]♯ = H ([[f]]♯) where:

H (M) = Id|Locals ⊕ {x 7→ (M ◦ enter♯)|Globals

enter♯ x =

{

x if x ∈ Globals

0 otherwise

560

... in the Example:

If [[work]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t}

then H [[work]]♯ = Id{t} ⊕ {a1 7→ a1, ret 7→ a1}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

Now we can perform fixpoint iteration :-)

561

7

8

work();

9

10

Neg (a1) Pos (a1)

ret = a1;

work ()

1

7 {a1 7→ a1, ret 7→ ret, t 7→ t}

9 {a1 7→ a1, ret 7→ ret, t 7→ t}

10 {a1 7→ a1, ret 7→ a1, t 7→ t}

8 {a1 7→ a1, ret 7→ ret, t 7→ t}

[[(8, . . ., 9)]]♯ ◦ [[8]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t} ◦

{a1 7→ a1, ret 7→ ret, t 7→ t}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

562

7

8

work();

9

10

Neg (a1) Pos (a1)

ret = a1;

work ()

2

7 {a1 7→ a1, ret 7→ ret, t 7→ t}

9 {a1 7→ a1, ret 7→ a1 ⊔ ret, t 7→ t}

10 {a1 7→ a1, ret 7→ a1, t 7→ t}

8 {a1 7→ a1, ret 7→ ret, t 7→ t}

[[(8, . . ., 9)]]♯ ◦ [[8]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t} ◦

{a1 7→ a1, ret 7→ ret, t 7→ t}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

563

