Call-Graph:

- The nodes are the procedures.
- An edge connexts g with h, whenever the body of g contains a call of h.

Strategies for Inlining:

- Just copy nur leaf-procedures, i.e., procedures without further calls :-)
- Copy all non-recursive procedures!
... here, we consider just leaf-procedures ;-)

Transformation 9:

Note:

- The Nop-edge can be eliminated if the stop-node of f has no out-going edges ...
- The x_{f} are the copies of the locals of the procedure f.
- According to our semantics of procedure calls, these must be initialized with $0 \quad:-$

2. Idea:

Elimination of Tail Recursion

$$
\begin{aligned}
& f() \quad\{\text { int } b ; \\
& \\
& \quad \text { if }\left(a_{2} \leq 1\right)\left\{\text { ret }=a_{1} ; \text { goto _exit; }\right\} \\
& \\
& \quad b=a_{1} \cdot a_{2} ; \\
& \\
& a_{2}=a_{2}-1 ; \\
& \\
& a_{1}=b ; \\
& \\
& \quad f() ; \\
& \text { _exit }: \\
& \}
\end{aligned}
$$

After the procedure call, nothing in the body remains to be done.
$\Longrightarrow \quad$ We may directly jump to the beginning :-)
... after having reset the locals to 0 .
... this yields in the Example:

$$
\begin{array}{ll}
f()\{ & \text { int } b ; \\
& \quad \text { if }\left(a_{2} \leq 1\right)\left\{\text { ret }=a_{1} ; \text { goto _exit; }\right\} \\
& b=a_{1} \cdot a_{2} ; \\
& a_{2}=a_{2}-1 ; \\
& a_{1}=b ; \\
& b=0 ; \text { goto } _f ; \\
\text { _exit: } & \\
\}
\end{array}
$$

//
It works, since we have ruled out references to variables!

Transformation 11:

Warning:

$\rightarrow \quad$ This optimization is crucial for programming languages without iteration constructs !!!
$\rightarrow \quad$ Duplication of code is not necessary :-)
$\rightarrow \quad$ No variable renaming is necessary :-)
$\rightarrow \quad$ The optimization may also be profitable for non-recursive tail calls :-)
$\rightarrow \quad$ The corresponding code may contain jumps from the body of one procedure into the body of another ???

Background 4: Interprocedural Analysis

So far, we can analyze each procedure separately.
$\rightarrow \quad$ The costs are moderate :-)
$\rightarrow \quad$ The methods also work in presence of separate compilation :-)
$\rightarrow \quad$ At procedure calls, we must assume the worst case
$\rightarrow \quad$ Constant propagation only works for local constants

Question:

How can recursive programs be analyzed ???

Example:

Constant Propagation

```
main() \(\{\) int \(t ;\)
    \(t=0 ;\)
    if \((t) M[17]=3\);
    \(a_{1}=t ;\)
    work ();
    ret \(=1\) - ret;
\}
```


Example:

Constant Propagation

Example:
 Constant Propagation

(1) Functional Approach:

Let \mathbb{D} denote a complete lattice of (abstract) states.

Idea:
Represent the effect of $f()$ by a function:

$$
\llbracket f \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}
$$

Micha Sharir, Tel Aviv University

Amir Pnueli, Weizmann Institute

In order to determine the effect of a call edge $k=(u, f() ; v) \quad$ we require abstract functions:

$$
\begin{array}{lll}
\text { enter }^{\sharp} & : & \mathbb{D} \rightarrow \mathbb{D} \\
\text { combine }
\end{array} \quad: \quad \mathbb{D}^{2} \rightarrow \mathbb{D}
$$

Then we define:

$$
\llbracket k \rrbracket^{\sharp} D=\operatorname{combine}^{\sharp}\left(D, \llbracket f \rrbracket^{\sharp}\left(\text { enter }^{\sharp} D\right)\right)
$$

... for Constant Propagation:

$$
\begin{array}{ll}
\mathbb{D} & =\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp} \\
\text { enter }^{\sharp} D & = \begin{cases}\perp & \text { if } D=\perp \\
\left.D\right|_{\text {Globals }} \oplus\{x \mapsto 0 \mid x \in \text { Locals }\} & \text { otherwise }\end{cases} \\
\text { combine }^{\sharp}\left(D_{1}, D_{2}\right) & = \begin{cases}\perp & \text { if } D_{1}=\perp \vee D_{2}=\perp \\
\left.\left.D_{1}\right|_{\text {Locals }} \oplus D_{2}\right|_{\text {Globals }} & \text { otherwise }\end{cases}
\end{array}
$$

The effects $\llbracket f \rrbracket^{\sharp}$ then can be determined by a system of constraints over the complete lattice $\mathbb{D} \rightarrow \mathbb{D}$:

$$
\begin{array}{lll}
\llbracket v \rrbracket^{\sharp} & \sqsupseteq \mathrm{Id} & v \quad \text { Eintrittspunkt } \\
\llbracket v \rrbracket^{\sharp} & \sqsupseteq \llbracket k \rrbracket^{\sharp} \circ \llbracket u \rrbracket^{\sharp} & k=(u, \ldots, v) \quad \text { edge } \\
\llbracket f \rrbracket^{\sharp} & \sqsupseteq \llbracket s t o p_{f} \rrbracket^{\sharp} & \text { stop }_{f} \quad \text { end point of }
\end{array}
$$

$\llbracket v \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D} \quad$ describes the effect of all prefixes of computation forests w of a procedure which lead from the entry point to v :-)

Problems:

- How can we represent functions $f: \mathbb{D} \rightarrow \mathbb{D}$???
- If $\# \mathbb{D}=\infty$, then $\mathbb{D} \rightarrow \mathbb{D}$ has infinite strictly increasing chains :-(

Simplification: Copy-Constants
\rightarrow Conditions are interpreted as ; :-)
\rightarrow Only assignments $x=e$; with $e \in \operatorname{Vars} \cup \mathbb{Z}$ are treated exactly :-)

Observation:

$\rightarrow \quad$ The effects of assignments are:

$$
\llbracket x=e ; \rrbracket^{\sharp} D= \begin{cases}D \oplus\{x \mapsto c\} & \text { if } e=c \in \mathbb{Z} \\ D \oplus\{x \mapsto(D y)\} & \text { if } e=y \in \text { Vars } \\ D \oplus\{x \mapsto \top\} & \text { otherwise }\end{cases}
$$

\rightarrow Let \mathbb{V} denote the (finite !!!) set of constant right-hand sides. Then variables may only take values from $\quad \mathbb{V}^{\top}$:-))
$\rightarrow \quad$ The occurring effects can be taken from

$$
\mathbb{D}_{f} \rightarrow \mathbb{D}_{f} \quad \text { with } \quad \mathbb{D}_{f}=\left(\text { Vars } \rightarrow \mathbb{V}^{\top}\right)_{\perp}
$$

$\rightarrow \quad$ The complete lattice is huge, but finite !!!

Improvement:

$\rightarrow \quad$ Not all functions from $\quad \mathbb{D}_{f} \rightarrow \mathbb{D}_{f} \quad$ will occur :-)
$\rightarrow \quad$ All occurring functions $\quad \lambda D . \perp \neq M$ are of the form:

$$
\begin{array}{lll}
M & =\left\{x \mapsto\left(b_{x} \sqcup \bigsqcup_{y \in I_{x}} y\right) \mid x \in \text { Vars }\right\} & \\
\text { where: } \\
M D=\left\{x \mapsto\left(b_{x} \sqcup \bigsqcup_{y \in I_{x}} D y\right) \mid x \in \text { Vars }\right\} & & \text { für } D \neq \perp
\end{array}
$$

$\rightarrow \quad$ Let $\quad \mathbb{M}$ denote the set of all these functions. Then for $M_{1}, M_{2} \in \mathbb{M} \quad\left(M_{1} \neq \lambda D . \perp \neq M_{2}\right):$

$$
\left(M_{1} \sqcup M_{2}\right) x=\left(M_{1} x\right) \sqcup\left(M_{2} x\right)
$$

\rightarrow For $k=\#$ Vars , \mathbb{M} has height $\left.\mathcal{O}\left(k^{2}\right) \quad:-\right)$

Improvement (Cont.):

$\rightarrow \quad$ Also, composition can be directly implemented:

$$
\begin{aligned}
\left(M_{1} \circ M_{2}\right) x & =b^{\prime} \sqcup \bigsqcup_{y \in I} y \quad \text { with } \\
b^{\prime} & =b \sqcup \bigsqcup_{z \in I} b_{z} \quad \\
I^{\prime} & =\bigcup_{z \in I} I_{z} \quad \text { where } \\
M_{1} x & =b \sqcup \bigsqcup_{y \in I} y \\
M_{2} z & =b_{z} \sqcup \bigsqcup_{y \in I_{z}} y
\end{aligned}
$$

$\rightarrow \quad$ The effects of assignments then are:

$$
\llbracket x=e ; \rrbracket^{\sharp}= \begin{cases}\operatorname{Id}_{\text {Vars }} \oplus\{x \mapsto c\} & \text { if } e=c \in \mathbb{Z} \\ \operatorname{ld}_{\text {Vars }} \oplus\{x \mapsto y\} & \text { if } e=y \in \text { Vars } \\ \operatorname{Id}_{\text {Vars }} \oplus\{x \mapsto \mathrm{~T}\} & \text { otherwise }\end{cases}
$$

... in the Example:

$$
\begin{aligned}
& \llbracket t=0 ; \rrbracket^{\sharp}=\left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto \text { ret }, t \mapsto 0\right\} \\
& \llbracket a_{1}=t ; \rrbracket^{\sharp}=\left\{a_{1} \mapsto t, \text { ret } \mapsto \text { ret, } t \mapsto t\right\}
\end{aligned}
$$

In order to implement the analysis, we additionally must construct the effect of a call $k=\left(, f()_{i,}\right)$ from the effect of a procedure f :

$$
\begin{aligned}
\llbracket k \rrbracket^{\sharp} & =H\left(\llbracket f \rrbracket^{\sharp}\right) \quad \text { where: } \\
H(M) & =|\mathrm{Id}|_{\text {Locals }} \oplus\left\{\times\left.\mapsto\left(M \circ \text { enter } r^{\sharp}\right)\right|_{\text {Globals }}\right. \\
\text { enter }^{\sharp} x & = \begin{cases}x & \text { if } x \in \text { Globals } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

... in the Example:

$$
\text { If } \begin{aligned}
\text { Ifork } \rrbracket^{\sharp} & =\left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\} \\
\text { then } H \llbracket \text { work } \rrbracket^{\sharp} & =\operatorname{Id}\{t\}\left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}\right\} \\
& =\left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\}
\end{aligned}
$$

Now we can perform fixpoint iteration :-)

	1
7	$\left\{a_{1} \mapsto a_{1}\right.$, ret \mapsto ret, $\left.t \mapsto t\right\}$
9	$\left\{a_{1} \mapsto a_{1}\right.$, ret \mapsto ret, $\left.t \mapsto t\right\}$
10	$\left\{a_{1} \mapsto a_{1}\right.$, ret $\left.\mapsto a_{1}, t \mapsto t\right\}$
8	$\left\{a_{1} \mapsto a_{1}\right.$, ret \mapsto ret, $\left.t \mapsto t\right\}$

$$
\begin{aligned}
\llbracket(8, \ldots, 9) \rrbracket^{\sharp} \circ \llbracket 8 \rrbracket^{\sharp}= & \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\} \circ \\
& \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto \text { ret }, t \mapsto t\right\} \\
= & \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\}
\end{aligned}
$$

	2
7	$\left\{a_{1} \longmapsto a_{1}\right.$, ret \longmapsto ret, $\left.t \mapsto t\right\}$
9	$\left\{a_{1} \longmapsto a_{1}\right.$, ret $\longmapsto a_{1} \sqcup$ ret,$\left.t \mapsto t\right\}$
10	$\left\{a_{1} \longmapsto a_{1}\right.$, ret $\left.\longmapsto a_{1}, t \mapsto t\right\}$
8	$\left\{a_{1} \longmapsto a_{1}\right.$, ret \longmapsto ret,$\left.t \mapsto t\right\}$

$$
\begin{aligned}
\llbracket(8, \ldots, 9) \rrbracket^{\sharp \circ \llbracket 8 \rrbracket^{\sharp}=} & \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\} \circ \\
& \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto \text { ret }, t \mapsto t\right\} \\
= & \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\}
\end{aligned}
$$

