If we know the effects of procedure calls, we can put up a constraint system for determining the abstract state when reaching a program point:

$$\mathcal{R}[\text{main}] \supseteq \text{ enter}^{\sharp} d_{0}$$

$$\mathcal{R}[f] \supseteq \text{ enter}^{\sharp} (\mathcal{R}[u]) \qquad k = (u, f();, _) \text{ call}$$

$$\mathcal{R}[v] \supseteq \mathcal{R}[f] \qquad v \text{ entry point of } f$$

$$\mathcal{R}[v] \supseteq [k]^{\sharp} (\mathcal{R}[u]) \qquad k = (u, _, v) \text{ edge}$$

... in the Example:

$$\begin{array}{c|c}
0 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
1 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
2 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
3 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
4 & \{a_1 \mapsto 0, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
5 & \{a_1 \mapsto 0, \operatorname{ret} \mapsto 0, t \mapsto 0\} \\
6 & \{a_1 \mapsto 0, \operatorname{ret} \mapsto \top, t \mapsto 0\}
\end{array}$$

Discussion:

- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments :-(
- In the second phase, however, we could have been more precise :-)
- The extra abstractions were necessary for two reasons:
 - (1) The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \to \mathbb{D}$ must be finite;
 - (2) The functions $M \in \mathbb{M}$ must be efficiently implementable :-)
- The second condition can, sometimes, be abandoned ...

Observation:

- → Often, procedures are only called for few distinct abstract arguments.
- \rightarrow Each procedure need only to be analyzed for these :-)
- \rightarrow Put up a constraint system:

 $\begin{bmatrix} v, a \end{bmatrix}^{\sharp} \supseteq a \qquad v \text{ entry point}$ $\begin{bmatrix} v, a \end{bmatrix}^{\sharp} \supseteq \text{ combine}^{\sharp} (\llbracket u, a \rrbracket, \llbracket f, \text{enter}^{\sharp} \llbracket u, a \rrbracket^{\sharp} \rrbracket^{\sharp}) (u, f();, v) \text{ call}$ $\begin{bmatrix} v, a \rrbracket^{\sharp} \supseteq [\llbracket ab \rrbracket^{\sharp} \llbracket u, a \rrbracket^{\sharp} \quad k = (u, lab, v) \text{ edge}$ $\llbracket f, a \rrbracket^{\sharp} \supseteq [\llbracket stop_{f}, a \rrbracket^{\sharp} \quad stop_{f} \text{ end point of } f$ $// \quad \llbracket v, a \rrbracket^{\sharp} \qquad \text{value for the argument } a.$

Discussion:

- This constraint system may be huge :-(
- We do not want to solve it completely!!!
- The fixpoint algo provides us also with the set of actual parameters *a* ∈ D for which procedures are (possibly) called and all abstract values at their program points for each of these calls :-)

... in the Example:

Let us try a full constant propagation ...

Discussion:

- In the Example, the analysis terminates quickly :-)
- If D has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments :-))
- Analogous analysis algorithms have proved very effective for the analysis of Prolog :-)
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads :-)

(2) The Call-String Approach:

Idea:

- \rightarrow Compute the set of all reachable call stacks!
- \rightarrow In general, this is infinite :-(
- → Only treat stacks up to a fixed depth *d* precisely! From longer stacks, we only keep the upper prefix of length *d* :-)
- \rightarrow Important special case: d = 0.
 - \Rightarrow Just track the current stack frame ...

... in the Example:

The conditions for 5, 7, 10, e.g., are:

 $\mathcal{R}[5] \supseteq \operatorname{combine}^{\sharp} (\mathcal{R}[4], \mathcal{R}[10])$ $\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp} (\mathcal{R}[4])$ $\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp} (\mathcal{R}[8])$ $\mathcal{R}[9] \supseteq \operatorname{combine}^{\sharp} (\mathcal{R}[8], \mathcal{R}[10])$

Warning:

The resulting super-graph contains obviously impossible paths ...

... in the Example this is:

... in the Example this is:

Note:

- → In the example, we find the same results: more paths render the results less precise.
 In particular, we provide for each procedure the result just for one (possibly very boring) argument :-(
- → The analysis terminates whenever D has no infinite strictly ascending chains :-)
- → The correctness is easily shown w.r.t. the operational semantics with call stacks.
- → For the correctness of the functional approach, the semantics with computation forests is better suited :-)

3 Exploiting Hardware Features

Question:

How can we optimally use:

- ... Registers
- ... Pipelines
- ... Caches
- ... Processors ???

3.1 **Registers**

Example:

$$\begin{array}{c} \mathsf{read}(); \\ x = M[A]; \\ y = x + 1; \\ \mathsf{if} \ (y) \ \{ \\ z = x \cdot x; \\ M[A] = z; \\ \} \end{array} \begin{array}{c} \mathsf{Neg}(y) \\ \mathsf{else} \ \{ \\ t = -y \cdot y; \\ M[A] = t; \\ \end{bmatrix} \begin{array}{c} \mathsf{Neg}(y) \\ \mathsf{solution} \\ \mathsf$$

The program uses 5 variables ...

Problem:

What if the program uses more variables than there are registers :-(

Idea:

Use one register for several variables :-) In the example, e.g., one for x, t, z ...

read();

$$x = M[A];$$

 $y = x + 1;$
if $(y) \{$
 $z = x \cdot x;$
 $M[A] = z;$
} else {
 $t = -y \cdot y;$
 $M[A] = t;$
}

read();

$$R = M[A];$$

 $y = R + 1;$
if $(y) \{$
 $R = R \cdot R;$
 $M[A] = R;$
} else {
 $R = -y \cdot y;$
 $M[A] = R;$
}

Warning:

This is only possible if the live ranges do not overlap :-)

The (true) live range of x is defined by:

$$\mathcal{L}[x] = \{ u \mid x \in \mathcal{L}[u] \}$$

... in the Example:

	L
8	Ø
7	$\{A,z\}$
6	$\{A, x\}$
5	$\{A,t\}$
4	$\{A, y\}$
3	$\{A, x, y\}$
2	$\{A, x\}$
1	$\{A\}$
0	Ø

	L
8	Ø
7	$\{A,z\}$
6	$\{A, x\}$
5	$\{A,t\}$
4	$\{A, y\}$
3	$\{A, x, y\}$
2	$\{A, x\}$
1	$\{A\}$
0	Ø

Live Ranges:

In order to determine sets of compatible variables, we construct the Interference Graph $I = (Vars, E_I)$ where:

$$E_I = \{\{x, y\} \mid x \neq y, \mathcal{L}[x] \cap \mathcal{L}[y] \neq \emptyset\}$$

*E*_{*I*} has an edge for $x \neq y$ iff x, y are jointly live at some program point :-)

... in the Example:

Variables which are **not** connected with an edge can be assigned to the same register :-)

Variables which are **not** connected with an edge can be assigned to the same register :-)

