If we know the effects of procedure calls, we can put up a constraint system for determining the abstract state when reaching a program point:

$$
\begin{array}{llll}
\mathcal{R}[\text { main }] & \sqsupseteq \text { enter }^{\sharp} d_{0} & & \\
\mathcal{R}[f] & \sqsupseteq \text { enter } \\
\sharp & \mathcal{R}[u]) & & k=(u, f() ;,) \text { call } \\
\mathcal{R}[v] & \sqsupseteq \mathcal{R}[f] & & v \text { entry point of } f \\
\mathcal{R}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp}(\mathcal{R}[u]) & & k=(u,, v) \text { edge }
\end{array}
$$

... in the Example:

0	$\left\{a_{1} \mapsto \top\right.$, ret $\left.\mapsto \top, t \mapsto 0\right\}$
1	$\left\{a_{1} \mapsto \top\right.$, ret $\left.\mapsto T, t \mapsto 0\right\}$
2	$\left\{a_{1} \mapsto \top\right.$, ret $\left.\mapsto \top, t \mapsto 0\right\}$
3	$\left\{a_{1} \mapsto \top\right.$, ret $\left.\mapsto \top, t \mapsto 0\right\}$
4	$\left\{a_{1} \mapsto 0\right.$, ret $\left.\mapsto \top, t \mapsto 0\right\}$
5	$\left\{a_{1} \mapsto 0\right.$, ret $\left.\mapsto 0, t \mapsto 0\right\}$
6	$\left\{a_{1} \mapsto 0\right.$, ret $\left.\mapsto \top, t \mapsto 0\right\}$

Discussion:

- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments :-(
- In the second phase, however, we could have been more precise :-)
- The extra abstractions were necessary for two reasons:
(1) The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \rightarrow \mathbb{D}$ must be finite;
(2) The functions $\quad M \in \mathbb{M}$ must be efficiently implementable :-)
- The second condition can, sometimes, be abandoned ...

Observation:
$\rightarrow \quad$ Often, procedures are only called for few distinct abstract arguments.
$\rightarrow \quad$ Each procedure need only to be analyzed for these :-)
\rightarrow Put up a constraint system:

$$
\begin{aligned}
& \llbracket v, a \rrbracket^{\sharp} \sqsupseteq a \quad v \text { entry point } \\
& \llbracket v, a \rrbracket^{\sharp} \sqsupseteq \operatorname{combine}^{\sharp}\left(\llbracket u, a \rrbracket, \llbracket f \text {, enter } \llbracket \llbracket u, a \rrbracket^{\sharp} \rrbracket^{\sharp}\right) \\
& \text { (u,f();v) call } \\
& \llbracket v, a \rrbracket^{\sharp} \sqsupseteq \llbracket l a b \rrbracket^{\sharp} \llbracket u, a \rrbracket^{\sharp} \quad k=(u, l a b, v) \quad \text { edge } \\
& \llbracket f, a \rrbracket^{\sharp} \sqsupseteq \llbracket \text { stop }_{f}, a \rrbracket^{\sharp} \quad \text { stop }_{f} \quad \text { end point of } f \\
& / / \llbracket v, a \rrbracket^{\sharp}=\text { value for the argument } a \text {. }
\end{aligned}
$$

Discussion:

- This constraint system may be huge
- We do not want to solve it completely!!!
- It is sufficient to compute the correct values for all calls which occur, i.e., which are necessary to determine the value $\llbracket \operatorname{main}(), a_{0} \rrbracket^{\sharp} \Longrightarrow$ We apply our local fixpoint algorithm :-))
- The fixpoint algo provides us also with the set of actual parameters $\quad a \in \mathbb{D}$ for which procedures are (possibly) called and all abstract values at their program points for each of these calls :-)

... in the Example:

Let us try a full constant propagation ...

	a_{1}	ret	a_{1}	ret
0	\top	\top	\top	\top
1	\top	\top	\top	\top
2	\top	\top	\perp	
3	\top	\top	\top	\top
4	\top	\top	0	\top
7	0	\top	0	\top
8	0	\top		\perp
9	0	\top	0	\top
10	0	\top	0	0
5	\top	\top	0	0
$\operatorname{main}()$	\top	\top	0	1

Discussion:

- In the Example, the analysis terminates quickly :-)
- If \mathbb{D} has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments :-))
- Analogous analysis algorithms have proved very effective for the analysis of Prolog :-)
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads :-)
(2) The Call-String Approach:

Idea:

$\rightarrow \quad$ Compute the set of all reachable call stacks!
$\rightarrow \quad$ In general, this is infinite
\rightarrow Only treat stacks up to a fixed depth d precisely! From longer stacks, we only keep the upper prefix of length d
:-)
$\rightarrow \quad$ Important special case: $d=0$.
\Longrightarrow Just track the current stack frame ...
... in the Example:

... in the Example:

The conditions for $5,7,10$, e.g., are:

$$
\begin{aligned}
\mathcal{R}[5] & \sqsupseteq \operatorname{combine}^{\sharp}(\mathcal{R}[4], \mathcal{R}[10]) \\
\mathcal{R}[7] & \sqsupseteq \operatorname{enter}^{\sharp}(\mathcal{R}[4]) \\
\mathcal{R}[7] & \sqsupseteq \operatorname{enter}^{\sharp}(\mathcal{R}[8]) \\
\mathcal{R}[9] & \sqsupseteq \operatorname{combine}^{\sharp}(\mathcal{R}[8], \mathcal{R}[10])
\end{aligned}
$$

Warning:
The resulting super-graph contains obviously impossible paths ...
... in the Example this is:

... in the Example this is:

Note:

$\rightarrow \quad$ In the example, we find the same results: more paths render the results less precise.
In particular, we provide for each procedure the result just for one (possibly very boring) argument
$\rightarrow \quad$ The analysis terminates - whenever \mathbb{D} has no infinite strictly ascending chains :-)
$\rightarrow \quad$ The correctness is easily shown w.r.t. the operational semantics with call stacks.
$\rightarrow \quad$ For the correctness of the functional approach, the semantics with computation forests is better suited :-)

3 Exploiting Hardware Features

Question:

How can we optimally use:
... Registers
... Pipelines
... Caches
... Processors ???

3.1 Registers

Example:

$$
\begin{aligned}
& \text { read(); } \\
& x=M[A] \text {; } \\
& y=x+1 \text {; } \\
& \text { if }(y)\{ \\
& z=x \cdot x ; \\
& M[A]=z ; \\
& \text { \} else \{ } \\
& t=-y \cdot y ; \\
& M[A]=t ; \\
& \text { \} }
\end{aligned}
$$

The program uses 5 variables ...

Problem:

What if the program uses more variables than there are registers

Idea:

Use one register for several variables :-)
In the example, e.g., one for $x, t, z \ldots$

$$
\begin{aligned}
& \operatorname{read}() ; \\
& x=M[A] ; \\
& \begin{array}{l}
y=x+1 ; \\
\text { if }(y)\{ \\
\qquad z=x \cdot x ; \\
\\
M[A]=z ; \\
\} \text { else }\{ \\
\qquad \\
\quad t=-y \cdot y ; \\
\\
\}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { read(); } \\
& R=M[A] ; \\
& y=R+1 ; \\
& \text { if }(y) \text { \{ } \\
& R=R \cdot R ; \\
& M[A]=R ; \\
& \text { \} else }\{ \\
& R=-y \cdot y ; \\
& M[A]=R ; \\
& \text { \} }
\end{aligned}
$$

Warning:

This is only possible if the live ranges do not overlap :-)
The (true) live range of x is defined by:

$$
\mathcal{L}[x]=\{u \mid x \in \mathcal{L}[u]\}
$$

... in the Example:

	\mathcal{L}
8	\emptyset
7	$\{A, z\}$
6	$\{A, x\}$
5	$\{A, t\}$
4	$\{A, y\}$
3	$\{A, x, y\}$
2	$\{A, x\}$
1	$\{A\}$
0	\emptyset

	\mathcal{L}
8	\emptyset
7	$\{A, z\}$
6	$\{A, x\}$
5	$\{A, t\}$
4	$\{A, y\}$
3	$\{A, x, y\}$
2	$\{A, x\}$
1	$\{A\}$
0	\emptyset

Live Ranges:

A	$\{1, \ldots, 7\}$
x	$\{2,3,6\}$
y	$\{2,4\}$
t	$\{5\}$
z	$\{7\}$

In order to determine sets of compatible variables, we construct the Interference Graph $I=\left(\right.$ Vars, $\left.E_{I}\right) \quad$ where:

$$
E_{I}=\{\{x, y\} \mid x \neq y, \mathcal{L}[x] \cap \mathcal{L}[y] \neq \emptyset\}
$$

E_{I} has an edge for $x \neq y$ iff x, y are jointly live at some program point :-)
... in the Example:

Interference Graph:

Variables which are not connected with an edge can be assigned to the same register :-)

Variables which are not connected with an edge can be assigned to the same register :-)

Color $=$ Register

