

Sviatoslav Sergeevich Lavrov, Russian Academy of Sciences (1962)

Gregory J. Chaitin, University of Maine

Abstract Problem:
Given: Undirected Graph (V,E).
Wanted: Minimal coloring, i.e., mapping $c: V \rightarrow \mathbb{N}$ mit
(1) $c(u) \neq c(v)$ for $\{u, v\} \in E$;
(2) $\quad \sqcup\{c(u) \mid u \in V\}$ minimal!

- In the example, 3 colors suffice :-) But:
- In general, the minimal coloring is not unique
- It is NP-complete to determine whether there is a coloring with at most k colors :-((

We must rely on heuristics or special cases :-)

Greedy Heuristics:

- Start somewhere with color 1;
- Next choose the smallest color which is different from the colors of all already colored neighbors;
- If a node is colored, color all neighbors which not yet have colors;
- Deal with one component after the other ...
... more concretely:

```
forall (v\inV) c[v]=0;
forall (v\inV) color (v);
void color (v) {
    if (c[v]}\not=0)\mathrm{ return;
    neighbors ={u\inV |{u,v}\inE };
    c[v]=}\{k>0||u\in\mathrm{ neighbors : k}\not=c(u)}
    forall ( }u\in\mathrm{ neighbors)
        if (c(u)==0) color (u);
}
```

The new color can be easily determined once the neighbors are sorted according to their colors :-)

Discussion:

$\rightarrow \quad$ Essentially, this is a Pre-order DFS :-)
$\rightarrow \quad$ In theory, the result may arbitrarily far from the optimum
:-(
$\rightarrow \quad$... in practice, it may not be as bad :-)
$\rightarrow \quad$... Warning: differen variants have beenpatented !!!

Discussion:

$\rightarrow \quad$ Essentially, this is a Pre-order DFS :-)
$\rightarrow \quad$ In theory, the result may arbitrarily far from the optimum
:-(
$\rightarrow \quad$... in practice, it may not be as bad :-)
\rightarrow... Warning: differen variants have beenpatented !!!

The algorithm works the better the smaller life ranges are ...
Idea: Life Range Splitting

Special Case:
 Basic Blocks

	\mathcal{L}
	x, y, z
$A_{1}=x+y ;$	x, z
$M\left[A_{1}\right]=z ;$	x
$x=x+1 ;$	x
$z=M\left[A_{1}\right] ;$	x, z
$t=M[x] ;$	x, z, t
$A_{2}=x+t ;$	x, z, t
$M\left[A_{2}\right]=z ;$	x, t
$y=M[x] ;$	y, t
$M[y]=t ;$	

Special Case:
 Basic Blocks

	\mathcal{L}
	x, y, z
$A_{1}=x+y ;$	x, z
$M\left[A_{1}\right]=z ;$	x
$x=x+1 ;$	x
$z=M\left[A_{1}\right] ;$	x, z
$t=M[x] ;$	x, z, t
$A_{2}=x+t ;$	x, z, t
$M\left[A_{2}\right]=z ;$	x, t
$y=M[x] ;$	y, t
$M[y]=t ;$	

The live ranges of x and z can be split:

	\mathcal{L}
	x, y, z
$A_{1}=x+y ;$	x, z
$M\left[A_{1}\right]=z ;$	x
$x_{1}=x+1 ;$	x_{1}
$z_{1}=M\left[A_{1}\right] ;$	x_{1}, z_{1}
$t=M\left[x_{1}\right] ;$	x_{1}, z_{1}, t
$A_{2}=x_{1}+t ;$	x_{1}, z_{1}, t
$M\left[A_{2}\right]=z_{1} ;$	x_{1}, t
$y_{1}=M\left[x_{1}\right] ;$	y_{1}, t
$M\left[y_{1}\right]=t ;$	

The live ranges of x and z can be split:

	\mathcal{L}
	x, y, z
$A_{1}=x+y ;$	x, z
$M\left[A_{1}\right]=z ;$	x
$x_{1}=x+1 ;$	x_{1}
$z_{1}=M\left[A_{1}\right] ;$	x_{1}, z_{1}
$t=M\left[x_{1}\right] ;$	x_{1}, z_{1}, t
$A_{2}=x_{1}+t ;$	x_{1}, z_{1}, t
$M\left[A_{2}\right]=z_{1} ;$	x_{1}, t
$y_{1}=M\left[x_{1}\right] ;$	y_{1}, t
$M\left[y_{1}\right]=t ;$	

Interference graphs for minimal live ranges on basic blocks are known as interval graphs:

vertex $=$ interval
edge $=$ joint vertex

The covering number of a vertex is given by the number of incident intervals.

Theorem:

maximal covering number
$=$ size of the maximal clique
= maximally necessary number of colors :-)

Graphs with this property (for every sub-graph) are called perfect

A minimal coloring can be found in polynomial time :-))

Idea:

\rightarrow Conceptually iterate over the vertices $0, \ldots, m-1$!
$\rightarrow \quad$ Maintain a list of currently free colors.
$\rightarrow \quad$ If an interval starts, allocate the next free color.
$\rightarrow \quad$ If an interval ends, free its color.

This results in the following algorithm:

```
free = [1,\ldots,k];
for (i=0;i<m;i++) {
    init[i]=[]; exit[i]=[];
}
forall (I = [u,v] \in Intervals) {
    init}[u]=(I:: init[u]); exit [i]=(I:: exit[v])
}
    for (i=0;i<m;i++) {
    forall (I i init[i]) {
        color [I] = hd free; free = tl free;
    forall (I exit[i]) free = color[I] :: free;
    }
}
```


Discussion:

$\rightarrow \quad$ For basic blocks we have succeeded to derive an optimal register allocation :-)
$\rightarrow \quad$ The same problem for simple loops (circular arc graphs) is already NP-hard
$\rightarrow \quad$ For arbitrary programs, we thus may apply some heuristics for graph coloring ...
$\rightarrow \quad$ which always works better the less live ranges overlap $\quad:-)$
$\rightarrow \quad$ If the number of real register does not suffice, the remaining variables are spilled into a fixed area on the stack.
$\rightarrow \quad$ Generally, variables from inner loops are preferably held in registers.

Generalization: Static Single Assignment Form

We proceed in two phases:

Step 1:
Transform the program such that each program point v is reached by at most one definition of a variable x which is live at v.

Step 2:

- Introduce a separate variant x_{i} for every ocurrence of a definition of a variable x !
- Replace every use of x with the use of the reaching variant $x_{h} \ldots$

Implementing Step 1:

- Determine for every program point the set of reaching definitions.
- If the join point v is reached by more than one definition for the same variable x which is live at program point v, insert definitions $x=x$; at the end of each incoming edge.

Example

Reaching Definitions

	\mathcal{R}
0	$\langle x, 0\rangle,\langle y, 0\rangle$
1	$\langle x, 1\rangle,\langle y, 0\rangle$
2	$\langle x, 1\rangle,\langle x, 5\rangle,\langle y, 2\rangle,\langle y, 4\rangle$
3	$\langle x, 1\rangle,\langle x, 5\rangle,\langle y, 2\rangle,\langle y, 4\rangle$
4	$\langle x, 1\rangle,\langle x, 5\rangle,\langle y, 4\rangle$
5	$\langle x, 5\rangle,\langle y, 4\rangle$
6	$\langle x, 1\rangle,\langle x, 5\rangle,\langle y, 2\rangle,\langle y, 4\rangle$
7	$\langle x, 1\rangle,\langle x, 5\rangle,\langle y, 2\rangle,\langle y, 4\rangle$

Example

Reaching Definitions

where $\psi \equiv x=x \mid y=y$

Reaching Definitions

The complete lattice \mathbb{R} for this analysis is given by:

$$
\mathbb{R}=2^{\text {Defs }}
$$

where

$$
\text { Defs }=\text { Vars } \times \text { Nodes } \quad \text { Defs }(x)=\{x\} \times \text { Nodes }
$$

Then:

$$
\begin{array}{ll}
\llbracket\left(_, x=r ; v\right) \rrbracket^{\sharp} R & =R \backslash \operatorname{Defs}(x) \cup\{\langle x, v\rangle\} \\
\llbracket\left(_, x=x \mid x \in L, v\right) \rrbracket^{\sharp} R & =R \backslash \bigcup_{x \in L} \operatorname{Defs}(x) \cup\{\langle x, v\rangle \mid x \in L\}
\end{array}
$$

The ordering on \mathbb{R} is given by subset inclusion \subseteq where the value at program start is given by $R_{0}=\{\langle x$, start $\rangle \mid x \in$ Vars $\}$.

The Transformation SSA, Step 1:

where $k \geq 2$.
The label ψ of the new in-going edges for v is given by:

$$
\psi \equiv\{x=x \mid x \in \mathcal{L}[v], \#(\mathcal{R}[v] \cap \operatorname{Defs}(x))>1\}
$$

If the node v is the start point of the program, we add auxiliary edges whenever there are further ingoing edges into v :

The Transformation SSA, Step 1 (cont.):

where $k \geq 1$ and $\quad \psi$ of the new in-going edges for v is given by:

$$
\psi \equiv\{x=x \mid x \in \mathcal{L}[v], \#(\mathcal{R}[v] \cap \operatorname{Defs}(x))>1\}
$$

Discussion

- Program start is interpreted as (the end point of) a definition of every variable x :-)
- At some edges, parallel definitions ψ are introduced !
- Some of them may be useless

Discussion

- Program start is interpreted as (the end point of) a definition of every variable x :-)
- At some edges, parallel definitions ψ are introduced !
- Some of them may be useless

Improvement:

- We introduce assignments $x=x$ before v only if the sets of reaching definitions for x at incoming edges of v differ!
- This introduction is repeated until every v is reached by exactly one definition for each variable live at v.

Theorem

Assume that every program point in the controlflow graph is reachable from start and that every left-hand side of a definition is live. Then:

1. The algorithm for inserting definitions $x=x$ terminates after at most $n \cdot(m+1)$ rounds were m is the number of program points with more than one in-going edges and n is the number of variables.
2. After termination, for every program point u, the set $\mathcal{R}[u]$ has exactly one definition for every variable x which is live at u.

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is well-structured, it terminates already after one iteration!

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is well-structured, it terminates already after one iteration!

A well-structured cfg can be reduced to a single vertex or edge by:

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is well-structured, it terminates already after one iteration!

A well-structured cfg can be reduced to a single vertex or edge by:

Discussion (cont.)

- Reducible cfgs are not the exception - but the rule :-)
- In Java, reducibility is only violated by switches with omitted breaks.
- If the insertion of definitions does not terminate after k iterations, we may immediately terminate the procedure by inserting definitions $x=x$ before all nodes which are reached by more than one definition of x.

Assume now that every program point u is reached by exactly one definition for each variable which is live at u...

The Transformation SSA, Step 2:

Each edge $(u, l a b, v)$ is replaced with $\left(u, \mathcal{T}_{v, \phi}[l a b], v\right)$ where $\phi x=x_{u^{\prime}} \quad$ if $\left\langle x, u^{\prime}\right\rangle \in \mathcal{R}[u]$ and:

$$
\begin{array}{ll}
\mathcal{T}_{v, \phi}[;] & =; \\
\mathcal{T}_{v, \phi}[\operatorname{Neg}(e)] & =\operatorname{Neg}(\phi(e)) \\
\mathcal{T}_{v, \phi}[\operatorname{Pos}(e)] & =\operatorname{Pos}(\phi(e)) \\
\mathcal{T}_{v, \phi}[x=e] & =x_{v}=\phi(e) \\
\mathcal{T}_{v, \phi}[x=M[e]] & =x_{v}=M[\phi(e)] \\
\mathcal{T}_{v, \phi}\left[M\left[e_{1}\right]=e_{2}\right] & \left.=M\left[\phi\left(e_{1}\right)\right]=\phi\left(e_{2}\right)\right] \\
\mathcal{T}_{v, \phi}[\{x=x \mid x \in L\}] & =\left\{x_{v}=\phi(x) \mid x \in L\right\}
\end{array}
$$

Remark

The multiple assignments:

$$
p a=x_{v}^{(1)}=x_{v_{1}}^{(1)}|\ldots| x_{v}^{(k)}=x_{v_{k}}^{(k)}
$$

in the last row are thought to be executed in parallel, i.e.,

$$
\llbracket p a \rrbracket(\rho, \mu)=\left(\rho \oplus\left\{x^{(i)}{ }_{v} \mapsto \rho\left(x^{(i)}{ }_{v_{i}}\right) \mid i=1, \ldots, k\right\}, \mu\right)
$$

Example

Theorem

Assume that every program point is reachable from start and the program is in SSA form without assignments to dead variables.

Let λ denote the maximal number of simultaneously live variables and G the interference graph of the program variables. Then:

$$
\lambda=\omega(G)=\chi(G)
$$

where $\omega(G), \chi(G)$ are the maximal size of a clique in G and the minimal number of colors for G, respectively.

A minimal coloring of G, i.e., an optimal register allocation can be found in polynomial time.

Discussion

- By the theorem, the number λ of required registers can be easily computed :-)
- Thus variables which are to be spilled to memory, can be determined ahead of the subsequent assignment of registers !
- Thus here, we may, e.g., insist on keeping iteration variables from inner loops.

Discussion

- By the theorem, the number λ of required registers can be easily computed :-)
- Thus variables which are to be spilled to memory, can be determined ahead of the subsequent assignment of registers !
- Thus here, we may, e.g., insist on keeping iteration variables from inner loops.
- Clearly, always $\lambda \leq \omega(G) \leq \chi(G) \quad:-)$

Therefore, it suffices to color the interference graph with λ colors.

- Instead, we provide an algorithm which directly operates on the cfg ...

Observation

- Live ranges of variables in programs in SSA form behave similar to live ranges in basic blocks !
- Consider some dfs spanning tree T of the cfg with root start.
- For each variable x, the live range $\mathcal{L}[x]$ forms a tree fragment of T !
- A tree fragment is a subtree from which some subtrees have been removed ...

Example

