Sviatoslav Sergeevich Lavrov,

Russian Academy of Sciences (1962)

591

Gregory J. Chaitin, University of Maine (1981)

592

Abstract Problem:
Given: Undirected Graph (V,E).

Wanted: Minimal coloring, i.e.,, mapping c¢:V — N mit

(1) c(u) #c(v) for {u,v} €E;
2) | WHce(u) |ueV} minimal!

e Inthe example, 3 colors suffice :-) But:
e In general, the minimal coloring is not unique :-(

o Itis NP-complete to determine whether there is a coloring
with at most k colors :-((

—

We must rely on heuristics or special cases :-)

593

Greedy Heuristics:

e Start somewhere with color 1;

e Next choose the smallest color which is ditferent from the
colors of all already colored neighbors;

e If anode is colored, color all neighbors which not yet have
colors;

e Deal with one component after the other ...

594

... more concretely:

forall (v e V) clv] =0;
forall (v € V) color (v);

void color (v) {
if (clv] #0) return;
neighbors = {u € V | {u,v} € E};
clv] =11{k > 0| Vu € neighbors : k # c(u)};
forall (u € neighbors)
if (c(u) ==20) color (u);
}

The new color can be easily determined once the neighbors are
sorted according to their colors :-)

595

Discussion:

— Essentially, this is a Pre-order DES :-)

— In theory, the result may arbitrarily far from the optimum
=(

— ...in practice, it may not be as bad :-)

— ... Warning: differen variants have beenpatented !!!

596

Discussion:

— Essentially, this is a Pre-order DES :-)

l

In theory, the result may arbitrarily far from the optimum
~(

— ...in practice, it may not be as bad :-)

l

... Warning: differen variants have beenpatented !!!

The algorithm works the better the smaller life ranges are ...

Idea: Life Range Splitting

597

Special Case: Basic Blocks

X, Y,z
Al =x+y; X,z
M|A,| = z; X

x=x+1; X

z = M|A1]; X,z
t = M|x]; X, z,t
A, =x+1; x,z,t
M|A;| = z; x,t
y = Mlx]; Yot

598

Special Case: Basic Blocks

X, Y,z
A1:X—|—y; X,Z
M|A,| = z; X

x=x+1; X

z = M|A1]; X,z a
t = M|x]; x,z,t

A, =x+1; X,z,t

M|A;| = z; x,t

y = Mlx]; Yot

599

The liverangesof x and =z can be split:

L

X, Y,z
Al =x+y; X,z
M|A1] = z; X
X1 =x+1; X1
z1 = M|A4]; X1,21
t = Mx]; X1,21,t
Ay = x1 +t; X1,21,t
M|A;| = zy; X1, t
y1 = M[xi]; Y1, t
Mlyi] = ¢;

600

The liverangesof x and =z can be split:

L
X, Y,z
Al =x+y; X,Z
M|A1] = z; X
x1=x+1; X1
z1 = M|A4]; X1, 21
t = Mx]; X1,21,t

Ay =x1+ 1t X1,21,t
M[Az] = Z1, xl,t
1 = M[xq]; Yi,t

601

Interference graphs for minimal live ranges on basic blocks are
known as interval graphs:

vertex interval

edge joint vertex

602

The covering number of a vertex is given by the number of
incident intervals.

Theorem:

maximal covering number

size of the maximal clique

maximally necessary number of colors :-)

Graphs with this property (for every sub-graph) are called perfect

A minimal coloring can be found in polynomial time :-))

603

Idea:

Lol bl

Conceptually iterate over the vertices 0,...,m — 1!
Maintain a list of currently free colors.
If an interval starts, allocate the next free color.

If an interval ends, free its color.

This results in the following algorithm:

604

free=[1,..., k];
for (i=0;i < m;i++)
init[i] = []; exit|i]

| .

;
}

forall (I = [u,v] € Intervals) {
initju] = (I:init[u]); exit|i] = (I::exit|v]);

}
for (i=0;i <m;i++) {
forall (I € init[i]) {
color|I] = hd free; free = tl free;
forall (I € exit|i]) free = color|I] :: free;
}
}

605

Discussion:

l

l

For basic blocks we have succeeded to derive an optimal
register allocation :-)

The same problem for simple loops (circular arc graphs) is
already NP-hard :~(

For arbitrary programs, we thus may apply some heuristics
for graph coloring ...

which always works better the less live ranges overlap :-)

If the number of real register does not suffice, the remaining
variables are spilled into a fixed area on the stack.

Generally, variables from inner loops are preferably held in
registers.

606

Generalization: ~ Static Single Assignment Form
We proceed in two phases:

Step 1:

Transform the program such that each program point v is
reached by at most one definition of a variable x which is
liveat wv.

Step 2:

e Introduce a separate variant x; for every ocurrence of a
definition of a variable x!

e Replace every use of x with the use of the reaching
variant xj ...

607

Implementing Step 1:

e Determine for every program point the set of reaching
definitions.

e Ifthejoinpoint © isreached by more than one definition
for the same variable x which islive at program point v,
insert definitions x = x; at the end of each incoming edge.

608

Reaching Definitions

e e
<t <H <t <A
= S =S S
~ ~— <H ~ ~—
S O AN AN — 3 Ao
S A
~ ~— ~ ~ 16O ~ ~ ~
NN N SO NN
S — O 1O — 1O 1O 1O
RoOR R 8 N R KR
~ T~ ~— ~~— ™ ~~— ~— ~—
NNt N
™ o ~ -
R =R
~— ~— ~— ~—
S — AN o0 <H 6 O DN

609

Reaching Definitions

o~~~ o~
< < < <
= S =S S
~ ~— <H ~ ~—
S O AN AN — 3 Ao
S A
~ ~— ~ ~ 16O ~ ~ ~
S — O 1O — 1O 1O 1O
RoOR R 8 N R KR
~ T~ ~— ~~— ™ ~~— ~— ~—
NNt N
™ o ~ —
R =R
~ ~— ~ ~—
S — AN o0 <H 6 O DN
— * |
/\ = =
= _

x|ly=y

X =

where 1

610

Reaching Definitions

The complete lattice R for this analysis is given by:

R = 2P%
where
Defs = Vars x Nodes ~ Defs(x) = {x} x Nodes
Then:
[(L x=r;,0)]R = R\Defs(x) U{(x,0)}

[(,x=x|x€Lv)])R = R\U, Defs(x)U{{x,v)|xe€L}

The ordering on R is given by subset inclusion C where the
value at program start is given by Ry = {(x, start) | x € Vars}.

611

The Transformation SSA, Step 1:

where k > 2.

The label 1) of the new in-going edges for v is given by:

P = {x=x|x € Lv],#(R[v] N Defs(x)) > 1}

612

If the node v is the start point of the program, we add auxiliary
edges whenever there are further ingoing edges into v:

The Transformation SSA, Step 1 (cont.):

wherek > 1and 1 of the new in-going edges for ©v is given

by:

Y = {x=x|x € Lv],#(R[v] N Defs(x)) > 1}

613

Discussion

e Program start is interpreted as (the end point of) a definition
of every variable x :-)

e Atsome edges, parallel definitions 1) are introduced !

e Some of them may be useless :-(

614

Discussion

e Program start is interpreted as (the end point of) a definition
of every variable x :-)

e Atsome edges, parallel definitions 1) are introduced !

e Some of them may be useless :-(

Improvement:

e Weintroduce assignments x = x before v only if the sets
of reaching definitions for x at incoming edges of v differ !

e This introduction is repeated until every v is reached by
exactly one definition for each variable live at v.

615

Theorem

Assume that every program point in the controlflow graph is
reachable from start and thatevery left-hand side of a
definition is live. Then:

1. The algorithm for inserting definitions x = x terminates
after atmost n-(m+1) roundswere m isthe number of
program points with more than one in-going edges and n is
the number of variables.

2. After termination, for every program point u, the set R [u] has
exactly one definition for every variable x which is live at u.

616

Discussion

The efficiency crucially depends on the number of iterations. If the
ctg is well-structured, it terminates already after one iteration !

617

Discussion

The efficiency crucially depends on the number of iterations. If the
ctg is well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

—> @) w—p @

618

Discussion

The efficiency crucially depends on the number of iterations. If the
ctg is well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

—> @) —— ©

= -l

619

Discussion (cont.)

e Reducible cfgs are not the exception — but the rule :-)

e InJava, reducibility is only violated by switches with omitted
breaks.

e If the insertion of definitions does not terminate after k
iterations, we may immediately terminate the procedure by
inserting definitions x = x before all nodes which are
reached by more than one definition of x.

Assume now that every program point u is reached by exactly
one definition for each variable which is live at u ...

620

The Transformation SSA, Step 2:

Each edge (u,lab,v) isreplaced with (u, 7, ,[lab],v) where
$x=x, if(x,u') e Rlul and:

Tl] = ;

7,4 Neg(e)] = Neg(¢(e))

T, »|Pos(e)] = Pos(¢(e))

Toglx = e] = Xy = ¢(e)

Toplx = Mlel] = X, = M[¢(e)]
Top|Mler| = e = Mlp(er)] = ¢(er)]
Tool{x=x|xeL} = {x,=¢(x)|xelL}

621

Remark

The multiple assignments:

pa=x{ =xM .. |2 = xgz)

in the last row are thought to be executed in parallel, i.e.,

[pa] (o, 1) = (p@® {xy = p(x'y) [i=1,...,k}, n)

622

Example

P = x3:x1\]/3:]/1
P, = x3:x2\]/3:]/2

623

Theorem

Assume that every program point is reachable from start and
the program is in SSA form without assignments to dead variables.

Let A denote the maximal number of simultaneously live
variables and G the interference graph of the program
variables. Then:

A =w(G) =x(G)

where w(G), x(G) are the maximal size of a clique in G and the
minimal number of colors for G, respectively.

A minimal coloring of G, i.e., an optimal register allocation can be
found in polynomial time.

624

Discussion

e By the theorem, the number A of required registers can be
easily computed :-)

e Thus variables which are to be spilled to memory, can be
determined ahead of the subsequent assignment of registers !

e Thus here, we may, e.g., insist on keeping iteration variables
from inner loops.

625

Discussion

By the theorem, the number A of required registers can be
easily computed :-)

Thus variables which are to be spilled to memory, can be
determined ahead of the subsequent assignment of registers !

Thus here, we may, e.g., insist on keeping iteration variables
from inner loops.

Clearly, always A < w(G) < x(G))

Therefore, it suffices to color the interference graph with A
colors.

Instead, we provide an algorithm which directly operates on
the cfg ...

626

Observation

e Live ranges of variables in programs in SSA form behave
similar to live ranges in basic blocks !

e Consider some dfs spanning tree T of the cfg with root
start.

e Foreach variable x,theliverange L[x] forms a tree
fragmentof T !

e A tree fragment is a subtree from which some subtrees have
been removed ...

627

Example

628

