
Sviatoslav Sergeevich Lavrov,

Russian Academy of Sciences (1962)

591

Gregory J. Chaitin, University of Maine (1981)

592

Abstract Problem:

Given: Undirected Graph (V, E) .

Wanted: Minimal coloring, i.e., mapping c : V → N mit

(1) c(u) 6= c(v) for {u, v} ∈ E;

(2)
⊔
{c(u) | u ∈ V} minimal!

• In the example, 3 colors suffice :-) But:

• In general, the minimal coloring is not unique :-(

• It is NP-complete to determine whether there is a coloring

with at most k colors :-((

==⇒

We must rely on heuristics or special cases :-)

593

Greedy Heuristics:

• Start somewhere with color 1;

• Next choose the smallest color which is different from the

colors of all already colored neighbors;

• If a node is colored, color all neighbors which not yet have

colors;

• Deal with one component after the other ...

594

... more concretely:

forall (v ∈ V) c[v] = 0;

forall (v ∈ V) color (v);

void color (v) {

if (c[v] 6= 0) return;

neighbors = {u ∈ V | {u, v} ∈ E};

c[v] = ⊔{k > 0 | ∀ u ∈ neighbors : k 6= c(u)};

forall (u ∈ neighbors)

if (c(u) == 0) color (u);

}

The new color can be easily determined once the neighbors are

sorted according to their colors :-)

595

Discussion:

→ Essentially, this is a Pre-order DFS :-)

→ In theory, the result may arbitrarily far from the optimum

:-(

→ ... in practice, it may not be as bad :-)

→ ... Warning: differen variants have beenpatented !!!

596

Discussion:

→ Essentially, this is a Pre-order DFS :-)

→ In theory, the result may arbitrarily far from the optimum

:-(

→ ... in practice, it may not be as bad :-)

→ ... Warning: differen variants have beenpatented !!!

The algorithm works the better the smaller life ranges are ...

Idea: Life Range Splitting

597

Special Case: Basic Blocks

L

x, y, z

A1 = x + y; x, z

M[A1] = z; x

x = x + 1; x

z = M[A1]; x, z

t = M[x]; x, z, t

A2 = x + t; x, z, t

M[A2] = z; x, t

y = M[x]; y, t

M[y] = t;

x

t

z y

598

Special Case: Basic Blocks

L

x, y, z

A1 = x + y; x, z

M[A1] = z; x

x = x + 1; x

z = M[A1]; x, z

t = M[x]; x, z, t

A2 = x + t; x, z, t

M[A2] = z; x, t

y = M[x]; y, t

M[y] = t;

x

t

z y

599

The live ranges of x and z can be split:

L

x, y, z

A1 = x + y; x, z

M[A1] = z; x

x1 = x + 1; x1

z1 = M[A1]; x1, z1

t = M[x1]; x1, z1, t

A2 = x1 + t; x1, z1, t

M[A2] = z1; x1, t

y1 = M[x1]; y1, t

M[y1] = t;

x

z y

t

x1

y1z1

600

The live ranges of x and z can be split:

L

x, y, z

A1 = x + y; x, z

M[A1] = z; x

x1 = x + 1; x1

z1 = M[A1]; x1, z1

t = M[x1]; x1, z1, t

A2 = x1 + t; x1, z1, t

M[A2] = z1; x1, t

y1 = M[x1]; y1, t

M[y1] = t;

x

z y

t

x1

z1 y1

601

Interference graphs for minimal live ranges on basic blocks are

known as interval graphs:

vertex === interval

edge === joint vertex

602

The covering number of a vertex is given by the number of

incident intervals.

Theorem:

maximal covering number

=== size of the maximal clique

=== maximally necessary number of colors :-)

Graphs with this property (for every sub-graph) are called perfect

...

A minimal coloring can be found in polynomial time :-))

603

Idea:

→ Conceptually iterate over the vertices 0, . . . ,m− 1 !

→ Maintain a list of currently free colors.

→ If an interval starts, allocate the next free color.

→ If an interval ends, free its color.

This results in the following algorithm:

604

free = [1, . . . , k];

for (i = 0; i < m; i++) {

init[i] = []; exit[i] = [];

}

forall (I = [u, v] ∈ Intervals) {

init[u] = (I :: init[u]); exit[i] = (I :: exit[v]);

}

for (i = 0; i < m; i++) {

forall (I ∈ init[i]) {

color[I] = hd free; free = tl free;

forall (I ∈ exit[i]) free = color[I] :: free;

}

}

605

Discussion:

→ For basic blocks we have succeeded to derive an optimal

register allocation :-)

→ The same problem for simple loops (circular arc graphs) is

already NP-hard :-(

→ For arbitrary programs, we thus may apply some heuristics

for graph coloring ...

→ which always works better the less live ranges overlap :-)

→ If the number of real register does not suffice, the remaining

variables are spilled into a fixed area on the stack.

→ Generally, variables from inner loops are preferably held in

registers.

606

Generalization: Static Single Assignment Form

We proceed in two phases:

Step 1:

Transform the program such that each program point v is

reached by at most one definition of a variable x which is

live at v.

Step 2:

• Introduce a separate variant xi for every ocurrence of a

definition of a variable x !

• Replace every use of x with the use of the reaching

variant xh ...

607

Implementing Step 1:

• Determine for every program point the set of reaching

definitions.

• If the join point v is reached by more than one definition

for the same variable x which is live at program point v ,

insert definitions x = x; at the end of each incoming edge.

608

Example

Reaching Definitions

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x = M[I];

0

M[R] = y;

R

0 〈x, 0〉, 〈y, 0〉

1 〈x, 1〉, 〈y, 0〉

2 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

3 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

4 〈x, 1〉, 〈x, 5〉, 〈y, 4〉

5 〈x, 5〉, 〈y, 4〉

6 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

7 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

where ψ ≡ x = x | y = y

609

Example

Reaching Definitions

7

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

0

M[R] = y;

y = 1;

x = M[I];

ψψ

R

0 〈x, 0〉, 〈y, 0〉

1 〈x, 1〉, 〈y, 0〉

2 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

3 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

4 〈x, 1〉, 〈x, 5〉, 〈y, 4〉

5 〈x, 5〉, 〈y, 4〉

6 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

7 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

where ψ ≡ x = x | y = y

610

Reaching Definitions

The complete lattice R for this analysis is given by:

R = 2Defs

where

Defs = Vars×Nodes Defs(x) = {x} ×Nodes

Then:

[[(_, x = r;, v)]]♯R = R\Defs(x) ∪ {〈x, v〉}

[[(_, x = x | x ∈ L, v)]]♯R = R\
⋃

x∈L Defs(x) ∪ {〈x, v〉 | x ∈ L}

The ordering on R is given by subset inclusion ⊆ where the

value at program start is given by R0 = {〈x, start〉 | x ∈ Vars}.

611

The Transformation SSA, Step 1:

v

uk

u1

l1

lk

v

u1
l1

uk
lkψ

ψ

where k ≥ 2.

The label ψ of the new in-going edges for v is given by:

ψ ≡ {x = x | x ∈ L[v], #(R[v] ∩Defs(x)) > 1}

612

If the node v is the start point of the program, we add auxiliary

edges whenever there are further ingoing edges into v:

The Transformation SSA, Step 1 (cont.):

v

u1
l1

uk
lk

v

uk

u1

l1

lk

ψ

ψ

ψ

where k ≥ 1 and ψ of the new in-going edges for v is given

by:

ψ ≡ {x = x | x ∈ L[v], #(R[v] ∩Defs(x)) > 1}

613

Discussion

• Program start is interpreted as (the end point of) a definition

of every variable x :-)

• At some edges, parallel definitions ψ are introduced !

• Some of them may be useless :-(

614

Discussion

• Program start is interpreted as (the end point of) a definition

of every variable x :-)

• At some edges, parallel definitions ψ are introduced !

• Some of them may be useless :-(

Improvement:

• We introduce assignments x = x before v only if the sets

of reaching definitions for x at incoming edges of v differ !

• This introduction is repeated until every v is reached by

exactly one definition for each variable live at v.

615

Theorem

Assume that every program point in the controlflow graph is

reachable from start and that every left-hand side of a

definition is live. Then:

1. The algorithm for inserting definitions x = x terminates

after at most n · (m + 1) rounds were m is the number of

program points with more than one in-going edges and n is

the number of variables.

2. After termination, for every program point u, the set R[u] has

exactly one definition for every variable x which is live at u.

616

Discussion

The efficiency crucially depends on the number of iterations. If the

cfg is well-structured, it terminates already after one iteration !

617

Discussion

The efficiency crucially depends on the number of iterations. If the

cfg is well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

v0

v1

v0

v1

v v

618

Discussion

The efficiency crucially depends on the number of iterations. If the

cfg is well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

v0

v1

v0

v1

v v

v0

u

v1

v0

u

v1

v0

u

v1 v1

v0

619

Discussion (cont.)

• Reducible cfgs are not the exception — but the rule :-)

• In Java, reducibility is only violated by switches with omitted

breaks.

• If the insertion of definitions does not terminate after k

iterations, we may immediately terminate the procedure by

inserting definitions x = x before all nodes which are

reached by more than one definition of x.

Assume now that every program point u is reached by exactly

one definition for each variable which is live at u ...

620

The Transformation SSA, Step 2:

Each edge (u, lab, v) is replaced with (u, Tv,φ[lab], v) where

φ x = xu′ if 〈x, u′〉 ∈ R[u] and:

Tv,φ[;] = ;

Tv,φ[Neg(e)] = Neg(φ(e))

Tv,φ[Pos(e)] = Pos(φ(e))

Tv,φ[x = e] = xv = φ(e)

Tv,φ[x = M[e]] = xv = M[φ(e)]

Tv,φ[M[e1] = e2] = M[φ(e1)] = φ(e2)]

Tv,φ[{x = x | x ∈ L}] = {xv = φ(x) | x ∈ L}

621

Remark

The multiple assignments:

pa = x(1)
v = x(1)

v1
| . . . | x(k)

v = x(k)
vk

in the last row are thought to be executed in parallel, i.e.,

[[pa]] (ρ,µ) = (ρ⊕ {x(i)
v 7→ ρ(x(i)

vi) | i = 1, . . . , k},µ)

622

Example

7

1

36

4

5

2

0
x1 = M[I];

y1 = 1;

Pos(x3 > 1)Neg(x3 > 1)

x2 = x3 − 1;

M[R] = y3;

ψ1 ψ2

y2 = x3 ∗ y3;

ψ1 = x3 = x1 | y3 = y1

ψ2 = x3 = x2 | y3 = y2

623

Theorem

Assume that every program point is reachable from start and

the program is in SSA form without assignments to dead variables.

Let λ denote the maximal number of simultaneously live

variables and G the interference graph of the program

variables. Then:

λ =ω(G) = χ(G)

where ω(G), χ(G) are the maximal size of a clique in G and the

minimal number of colors for G, respectively.

A minimal coloring of G, i.e., an optimal register allocation can be

found in polynomial time.

624

Discussion

• By the theorem, the number λ of required registers can be

easily computed :-)

• Thus variables which are to be spilled to memory, can be

determined ahead of the subsequent assignment of registers !

• Thus here, we may, e.g., insist on keeping iteration variables

from inner loops.

625

Discussion

• By the theorem, the number λ of required registers can be

easily computed :-)

• Thus variables which are to be spilled to memory, can be

determined ahead of the subsequent assignment of registers !

• Thus here, we may, e.g., insist on keeping iteration variables

from inner loops.

• Clearly, always λ ≤ω(G) ≤ χ(G) :-)

Therefore, it suffices to color the interference graph with λ

colors.

• Instead, we provide an algorithm which directly operates on

the cfg ...

626

Observation

• Live ranges of variables in programs in SSA form behave

similar to live ranges in basic blocks !

• Consider some dfs spanning tree T of the cfg with root

start.

• For each variable x, the live range L[x] forms a tree

fragment of T !

• A tree fragment is a subtree from which some subtrees have

been removed ...

627

Example

7

36

4

5

2

1

0

x = x− 1;

Neg(x > 1)

x = M[i];

y = 1;

y = x ∗ y;M[a] = y;

Pos(x > 1)
3

4

5

6

2

1

0

7

628

