Discussion

- Although the example program is not in SSA form, all live ranges still form tree fragments :-)
- The intersection of tree fragments is again a tree fragment !
- A set *C* of tree fragments forms a clique iff their intersection is non-empty !!!
- The greedy algorithm will find an optimal coloring ...

Proof of the Intersection Property

(1) Assume $I_1 \cap I_2 \neq \emptyset$ and v_i is the root of I_i . Then:

 $v_1 \in I_2$ or $v_2 \in I_1$

(2) Let *C* denote a clique of tree fragments. Then there is an enumeration $C = \{I_1, \ldots, I_r\}$ with roots v_1, \ldots, v_r such that

$$v_i \in I_j$$
 for all $j \le i$

In particular, $v_r \in I_i$ for all *i*. :-)

The Greedy Algorithm

```
forall (u \in Nodes) visited[u] = false;
forall (x \in \mathcal{L}[start]) \Gamma(x) = extract(free);
alloc(start);
```

```
void alloc (Node u) {
    visited[u] = true;
    forall ((lab, v) \in edges[u])
        if (¬visited[v]) {
            forall (x \in \mathcal{L}[u] \setminus \mathcal{L}[v]) insert(free, x);
            forall (x \in \mathcal{L}[v] \setminus \mathcal{L}[u]) \Gamma(x) = \text{extract}(free);
            alloc (v);
            }
        }
}
```

Example

Example

Remark:

- Intersection graphs for tree fragments are also known as cordal graphs ...
- A cordal graph is an undirected graph where every cycle with more than three nodes contains a cord :-)
- Cordal graphs are another sub-class of perfect graphs :-))
- Cheap register allocation comes at a price:

when transforming into SSA form, we have introduced parallel register-register moves :-(

Problem

The parallel register assignment:

 $\psi_1 = R_1 = R_2 \mid R_2 = R_1$

is meant to exchange the registers R_1 and R_2 :-)

There are at least two ways of implementing this exchange ...

Problem

The parallel register assignment:

 $\psi_1 = R_1 = R_2 \mid R_2 = R_1$

is meant to exchange the registers R_1 and R_2 :-)

There are at least two ways of implementing this exchange ...

(1) Using an auxiliary register:

$$R = R_1;$$

 $R_1 = R_2;$
 $R_2 = R;$

(2) XOR:

$$R_1 = R_1 \oplus R_2;$$

$$R_2 = R_1 \oplus R_2;$$

$$R_1 = R_1 \oplus R_2;$$

(2) XOR:

$$R_1 = R_1 \oplus R_2;$$

 $R_2 = R_1 \oplus R_2;$
 $R_1 = R_1 \oplus R_2;$

But what about cyclic shifts such as:

$$\psi_k = R_1 = R_2 \mid \ldots \mid R_{k-1} = R_k \mid R_k = R_1$$

for *k* > 2 **??**

(2) XOR:

$$R_1 = R_1 \oplus R_2;$$

 $R_2 = R_1 \oplus R_2;$
 $R_1 = R_1 \oplus R_2;$

But what about cyclic shifts such as:

$$\psi_k = R_1 = R_2 \mid \ldots \mid R_{k-1} = R_k \mid R_k = R_1$$

for *k* > 2 **??**

Then at most k - 1 swaps of two registers are needed:

$$egin{array}{rcl} \psi_k &=& R_1 \leftrightarrow R_2; \ &R_2 \leftrightarrow R_3; \ &\cdots \ &R_{k-1} \leftrightarrow R_k; \end{array}$$

Next complicated case: permutations.

- Every permutation can be decomposed into a set of disjoint shifts :-)
- Any permutation of *n* registers with *r* shifts can be realized by n r swaps ...

Next complicated case: permutations.

- Every permutation can be decomposed into a set of disjoint shifts :-)
- Any permutation of *n* registers with *r* shifts can be realized by n r swaps ...

Example

 $\psi = R_1 = R_2 \mid R_2 = R_5 \mid R_3 = R_4 \mid R_4 = R_3 \mid R_5 = R_1$

consists of the cycles (R_1, R_2, R_5) and (R_3, R_4) . Therefore:

$$\psi = R_1 \leftrightarrow R_2;$$

 $R_2 \leftrightarrow R_5;$
 $R_3 \leftrightarrow R_4;$

The general case:

- Every register receives its value at most once.
- The assignment therefore can be decomposed into a permutation together with tree-like assignments (directed towards the leaves) ...

Example

$$\psi = R_1 = R_2 \mid R_2 = R_4 \mid R_3 = R_5 \mid R_5 = R_3$$

The parallel assignment realizes the linear register moves for R_1 , R_2 and R_4 together with the cyclic shift for R_3 and R_5 :

$$\psi = R_1 = R_2;$$

 $R_2 = R_4;$
 $R_3 \leftrightarrow R_5;$

Interprocedural Register Allocation:

- \rightarrow For every local variable, there is an entry in the stack frame.
- → Before calling a function, these must be saved into the stack frame and be restored after the call.
- → Sometimes there is hardware support :-)
 Then the call is transparent for all registers.
- \rightarrow If it is our responsibility to save and restore, we may ...
 - save only registers which are over-written :-)
 - restore overwritten registers only.
- → Alternatively, we save only registers which are still live after the call — and then possibly into different registers ⇒ reduction of life ranges :-)

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction after the other strictly sequentially.

Here, we consider two approaches:

- (1) VLIW (Very Large Instruction Words)
- (2) Pipelining

VLIW:

One instruction simultaneously executes up to k (e.g., 4:-) elementary Instructions.

Pipelining:

Instruction execution may overlap.

Example:

$$w = (R_1 = R_2 + R_3 \mid D = D_1 * D_2 \mid R_3 = M[R_4])$$

Warning:

- Instructions occupy hardware ressources.
- Instructions may access the same busses/registers hazards
- Results of an instruction may be available only after some delay.
- During execution, different parts of the hardware are involved:

• During Execute and Write different internal registers/busses/alus may be used.

We conclude:

Distributing the instruction sequence into sequences of words is amenable to various constraints ...

In the following, we ignore the phases Fetch und Decode :-)

Examples for Constraints:

- (1) at most one load/store per word;
- (2) at most one jump;
- (3) at most one write into the same register.

Example Timing:

Gleitkomma-Operation	3
Laden/Speichern	2
Integer-Arithmetik	1

Timing Diagram:

 R_3 is over-written, after the addition has fetched 2 :-)

If a register is accessed simultaneously (here: R_3), a strategy of conflict solving is required ...

Conflicts:

Read-Read: A register is simulatneously read.

→ in general, unproblematic :-)

Read-Write: A register is simultaneously read and written.

Conflict Resolution:

- ... ruled out!
- Read is delayed (stalls), until write has terminated!
- Read before write returns old value!

Write-Write: A register is simultaneously written to.
 in general, unproblematic :-)
 Conflict Resolutions:

- ... ruled out!
- ...

In Our Examples ...

- simultaneous read is permitted;
- simultaneous write/read and write/write is ruled out;
- no stalls are injected.

We first consider basic blocks only, i.e., linear sequences of assignments ...

Idea: Data Dependence Graph

Vertices	Instructions
Edges	Dependencies

Example:

(1) x = x + 1;(2) y = M[A];(3) t = z;(4) z = M[A + x];(5) t = y + z;

Possible Dependencies:

Definition \rightarrow Use	//	Reaching Definitions
Use \rightarrow Definiti	on //	???
Definition \rightarrow Definiti	on //	Reaching Definitions

Reaching Definitions:

Determine for each u which definitions of may reach \implies can be determined by means of a system of constraints :-)

... in the Example:

1

$$x = x + 1;$$

2
 $y = M[A];$
3
 $t = z;$
4
 $z = M[A + x];$
5
 $t = y + z;$
6

$$\mathcal{R}$$

$$1 \quad \{\langle x,1\rangle, \langle y,1\rangle, \langle z,1\rangle, \langle t,1\rangle\}$$

$$2 \quad \{\langle x,2\rangle, \langle y,1\rangle, \langle z,1\rangle, \langle t,1\rangle\}$$

$$3 \quad \{\langle x,2\rangle, \langle y,3\rangle, \langle z,1\rangle, \langle t,1\rangle\}$$

$$4 \quad \{\langle x,2\rangle, \langle y,3\rangle, \langle z,1\rangle, \langle t,4\rangle\}$$

$$5 \quad \{\langle x,2\rangle, \langle y,3\rangle, \langle z,5\rangle, \langle t,4\rangle\}$$

$$6 \quad \{\langle x,2\rangle, \langle y,3\rangle, \langle z,5\rangle, \langle t,6\rangle\}$$

Let U_i , D_i denote the sets of variables which are used or defined at the edge outgoing from u_i . Then:

 $(u_1, u_2) \in DD \quad \text{if} \quad u_1 \in \mathcal{R}[u_2] \land D_1 \cap D_2 \neq \emptyset$ $(u_1, u_2) \in DU \quad \text{if} \quad u_1 \in \mathcal{R}[u_2] \land D_1 \cap U_2 \neq \emptyset$

... in the Example:

		Def	Use
1	x = x + 1;	{ <i>x</i> }	<i>{x}</i>
2	y = M[A];	<i>{y}</i>	$\{A\}$
3	t = z;	$\{t\}$	$\{z\}$
4	z = M[A + x];	$\{z\}$	$\{A, x\}$
5	t = y + z;	$\{t\}$	$\{y,z\}$

