Discussion

- Although the example program is not in SSA form, all live ranges still form tree fragments :-)
- The intersection of tree fragments is again a tree fragment !
- A set C of tree fragments forms a clique iff their intersection is non-empty !!!
- The greedy algorithm will find an optimal coloring ...

Proof of the Intersection Property

(1) Assume $I_{1} \cap I_{2} \neq \emptyset$ and v_{i} is the root of I_{i}. Then:

$$
v_{1} \in I_{2} \quad \text { or } \quad v_{2} \in I_{1}
$$

(2) Let C denote a clique of tree fragments. Then there is an enumeration $C=\left\{I_{1}, \ldots, I_{r}\right\} \quad$ with roots v_{1}, \ldots, v_{r} such that

$$
v_{i} \in I_{j} \quad \text { for all } \quad j \leq i
$$

In particular, $v_{r} \in I_{i} \quad$ for all $\left.i . \quad:-\right)$

The Greedy Algorithm

```
forall (u\inNodes) visited [u]= false;
forall (x\in\mathcal{L}[start]) }\Gamma(x)=\operatorname{extract(free);
alloc(start);
void alloc (Node u) {
    visited [u] = true;
    forall ((lab,v) \inedges[u])
    if (\negvisited[v]) {
        forall (x\in\mathcal{L}[u]\\mathcal{L}[v]) insert(free, x);
        forall (x\in\mathcal{L}[v]\\mathcal{L}[u]) \Gamma(x)= extract(free);
        alloc (v);
        }
    }
```


Example

Example

Remark:

- Intersection graphs for tree fragments are also known as cordal graphs ...
- A cordal graph is an undirected graph where every cycle with more than three nodes contains a cord :-)
- Cordal graphs are another sub-class of perfect graphs :-))
- Cheap register allocation comes at a price:
when transforming into SSA form, we have introduced parallel register-register moves

Problem

The parallel register assignment:

$$
\psi_{1}=R_{1}=R_{2} \mid R_{2}=R_{1}
$$

is meant to exchange the registers R_{1} and R_{2} :-)

There are at least two ways of implementing this exchange ...

Problem

The parallel register assignment:

$$
\psi_{1}=R_{1}=R_{2} \mid R_{2}=R_{1}
$$

is meant to exchange the registers R_{1} and R_{2} :-)

There are at least two ways of implementing this exchange ...
(1) Using an auxiliary register:

$$
\begin{aligned}
& R=R_{1} \\
& R_{1}=R_{2} \\
& R_{2}=R ;
\end{aligned}
$$

(2) XOR:

$$
\begin{aligned}
& R_{1}=R_{1} \oplus R_{2} \\
& R_{2}=R_{1} \oplus R_{2} \\
& R_{1}=R_{1} \oplus R_{2}
\end{aligned}
$$

(2) XOR:

$$
\begin{aligned}
& R_{1}=R_{1} \oplus R_{2} ; \\
& R_{2}=R_{1} \oplus R_{2} ; \\
& R_{1}=R_{1} \oplus R_{2} ;
\end{aligned}
$$

But what about cyclic shifts such as:

$$
\psi_{k}=R_{1}=R_{2}|\ldots| R_{k-1}=R_{k} \mid R_{k}=R_{1}
$$

for $k>2$??
(2) XOR:

$$
\begin{aligned}
& R_{1}=R_{1} \oplus R_{2} ; \\
& R_{2}=R_{1} \oplus R_{2} ; \\
& R_{1}=R_{1} \oplus R_{2} ;
\end{aligned}
$$

But what about cyclic shifts such as:

$$
\psi_{k}=R_{1}=R_{2}|\ldots| R_{k-1}=R_{k} \mid R_{k}=R_{1}
$$

for $k>2$? ?
Then at most $k-1$ swaps of two registers are needed:

$$
\begin{aligned}
\psi_{k}= & R_{1} \leftrightarrow R_{2} ; \\
& R_{2} \leftrightarrow R_{3} ; \\
& \ldots \\
& R_{k-1} \leftrightarrow R_{k} ;
\end{aligned}
$$

Next complicated case: permutations.

- Every permutation can be decomposed into a set of disjoint shifts :-)
- Any permutation of n registers with r shifts can be realized by $n-r$ swaps ...

Next complicated case: permutations.

- Every permutation can be decomposed into a set of disjoint shifts :-)
- Any permutation of n registers with r shifts can be realized by $n-r$ swaps ...

Example

$$
\psi=R_{1}=R_{2}\left|R_{2}=R_{5}\right| R_{3}=R_{4}\left|R_{4}=R_{3}\right| R_{5}=R_{1}
$$

consists of the cycles $\left(R_{1}, R_{2}, R_{5}\right)$ and (R_{3}, R_{4}). Therefore:

$$
\begin{aligned}
\psi= & R_{1} \leftrightarrow R_{2} ; \\
& R_{2} \leftrightarrow R_{5} ; \\
& R_{3} \leftrightarrow R_{4} ;
\end{aligned}
$$

The general case:

- Every register receives its value at most once.
- The assignment therefore can be decomposed into a permutation together with tree-like assignments (directed towards the leaves) ...

Example

$$
\psi=R_{1}=R_{2}\left|R_{2}=R_{4}\right| R_{3}=R_{5} \mid R_{5}=R_{3}
$$

The parallel assignment realizes the linear register moves for R_{1}, R_{2} and R_{4} together with the cyclic shift for R_{3} and R_{5} :

$$
\begin{aligned}
\psi= & R_{1}=R_{2} \\
& R_{2}=R_{4} \\
& R_{3} \leftrightarrow R_{5}
\end{aligned}
$$

Interprocedural Register Allocation:

$\rightarrow \quad$ For every local variable, there is an entry in the stack frame.
$\rightarrow \quad$ Before calling a function, these must be saved into the stack frame and be restored after the call.
$\rightarrow \quad$ Sometimes there is hardware support :-)
Then the call is transparent for all registers.
\rightarrow If it is our responsibility to save and restore, we may ...

- save only registers which are over-written :-)
- restore overwritten registers only.
$\rightarrow \quad$ Alternatively, we save only registers which are still live after the call - and then possibly into different registers \Longrightarrow reduction of life ranges :-)

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction after the other strictly sequentially.

Here, we consider two approaches:
(1) VLIW (Very Large Instruction Words)
(2) Pipelining

VLIW:

One instruction simultaneously executes up to k (e.g., 4:-) elementary Instructions.

Pipelining:
Instruction execution may overlap.

Example:

$$
w=\left(R_{1}=R_{2}+R_{3}\left|D=D_{1} * D_{2}\right| R_{3}=M\left[R_{4}\right]\right)
$$

Warning:

- Instructions occupy hardware ressources.
- Instructions may access the same busses/registers hazards
- Results of an instruction may be available only after some delay.
- During execution, different parts of the hardware are involved:

- During Execute and Write different internal registers/busses/alus may be used.

We conclude:

Distributing the instruction sequence into sequences of words is amenable to various constraints ...

In the following, we ignore the phases Fetch und Decode :-)

Examples for Constraints:

(1) at most one load/store per word;
(2) at most one jump;
(3) at most one write into the same register.

Example Timing:

Gleitkomma-Operation	3
Laden/Speichern	2
Integer-Arithmetik	1

Timing Diagram:

	R_{1}	R_{2}	R_{3}	D
0	5	-1	(12)IIA	0.3
1	1			
2			49	
3				17.4

R_{3} is over-written, after the addition has fetched 2 :-)

If a register is accessed simultaneously (here: R_{3}), a strategy of conflict solving is required ...

Conflicts:

Read-Read: A register is simulatneously read.
\Longrightarrow in general, unproblematic :-)
Read-Write: A register is simultaneously read and written.

Conflict Resolution:

- ... ruled out!
- Read is delayed (stalls), until write has terminated!
- Read before write returns old value!

Write-Write: A register is simultaneously written to.
\Longrightarrow in general, unproblematic :-)
Conflict Resolutions:

- ... ruled out!

In Our Examples ...

- simultaneous read is permitted;
- simultaneous write/read and write/write is ruled out;
- no stalls are injected.

We first consider basic blocks only, i.e., linear sequences of assignments ...

Idea: Data Dependence Graph

Vertices	Instructions
Edges	Dependencies

Example:
(1) $x=x+1$;
(2) $y=M[A]$;
(3) $t=z$;
(4) $z=M[A+x]$;
(5) $t=y+z$;

Possible Dependencies:

Definition	\rightarrow Use	$/ /$
Reaching Definitions		
Use	\rightarrow Definition	$/ /$
???		
Definition	\rightarrow Definition	$/ /$

Reaching Definitions:
Determine for each u which definitions of may reach can be determined by means of a system of constraints :-)
... in the Example:

	\mathcal{R}
1	$\{\langle x, 1\rangle,\langle y, 1\rangle,\langle z, 1\rangle,\langle t, 1\rangle\}$
2	$\{\langle x, 2\rangle,\langle y, 1\rangle,\langle z, 1\rangle,\langle t, 1\rangle\}$
3	$\{\langle x, 2\rangle,\langle y, 3\rangle,\langle z, 1\rangle,\langle t, 1\rangle\}$
4	$\{\langle x, 2\rangle,\langle y, 3\rangle,\langle z, 1\rangle,\langle t, 4\rangle\}$
5	$\{\langle x, 2\rangle,\langle y, 3\rangle,\langle z, 5\rangle,\langle t, 4\rangle\}$
6	$\{\langle x, 2\rangle,\langle y, 3\rangle,\langle z, 5\rangle,\langle t, 6\rangle\}$

Let U_{i}, D_{i} denote the sets of variables which are used or defined at the edge outgoing from u_{i}. Then:

$$
\begin{array}{lll}
\left(u_{1}, u_{2}\right) \in D D & \text { if } & u_{1} \in \mathcal{R}\left[u_{2}\right] \wedge D_{1} \cap D_{2} \neq \emptyset \\
\left(u_{1}, u_{2}\right) \in D U & \text { if } & u_{1} \in \mathcal{R}\left[u_{2}\right] \wedge D_{1} \cap U_{2} \neq \emptyset
\end{array}
$$

... in the Example:

		Def	Use
1	$x=x+1 ;$	$\{x\}$	$\{x\}$
2	$y=M[A] ;$	$\{y\}$	$\{A\}$
3	$t=z ;$	$\{t\}$	$\{z\}$
4	$z=M[A+x] ;$	$\{z\}$	$\{A, x\}$
5	$t=y+z ;$	$\{t\}$	$\{y, z\}$

