
Discussion

• Although the example program is not in SSA form, all live

ranges still form tree fragments :-)

• The intersection of tree fragments is again a tree fragment !

• A set C of tree fragments forms a clique iff their intersection is

non-empty !!!

• The greedy algorithm will find an optimal coloring ...

629

Proof of the Intersection Property

(1) Assume I1 ∩ I2 6= ∅ and vi is the root of Ii. Then:

v1 ∈ I2 or v2 ∈ I1

(2) Let C denote a clique of tree fragments.

Then there is an enumeration C = {I1, . . . , Ir} with roots

v1,. . . ,vr such that

vi ∈ I j for all j ≤ i

In particular, vr ∈ Ii for all i. :-)

630

The Greedy Algorithm

forall (u ∈ Nodes) visited[u] = false;

forall (x ∈ L[start]) Γ(x) = extract(free);

alloc(start);

void alloc (Node u) {

visited[u] = true;

forall ((lab, v) ∈ edges[u])

if (¬visited[v]) {

forall (x ∈ L[u]\L[v]) insert(free, x);

forall (x ∈ L[v]\L[u]) Γ(x) = extract(free);

alloc (v);

}

}

631

Example

8

0

1

2

3

64

5 7

read();

x = M[A];

y = x + 1;

Neg (y) Pos (y)

z = x · x

M[A] = z;

t = −y · y;

M[A] = t;

632

Example

8

0

1

2

3

64

5 7

read();

x = M[A];

y = x + 1;

Neg (y) Pos (y)

z = x · x

M[A] = z;

t = −y · y;

M[A] = t;

8

0

1

2

3

64

5 7

read();

R1 = M[A];

R2 = R1 + 1;

Pos (R2)

M[A] = R1 ;

Neg (R2)

R1 = −R2 · R2 ;

M[A] = R1 ;

R1 = R1 · R1

633

Remark:

• Intersection graphs for tree fragments are also known as

cordal graphs ...

• A cordal graph is an undirected graph where every cycle with

more than three nodes contains a cord :-)

• Cordal graphs are another sub-class of perfect graphs :-))

• Cheap register allocation comes at a price:

when transforming into SSA form, we have introduced

parallel register-register moves :-(

634

Problem

The parallel register assignment:

ψ1 = R1 = R2 | R2 = R1

is meant to exchange the registers R1 and R2 :-)

There are at least two ways of implementing this exchange ...

635

Problem

The parallel register assignment:

ψ1 = R1 = R2 | R2 = R1

is meant to exchange the registers R1 and R2 :-)

There are at least two ways of implementing this exchange ...

(1) Using an auxiliary register:

R = R1;

R1 = R2;

R2 = R;

636

(2) XOR:

R1 = R1 ⊕ R2;

R2 = R1 ⊕ R2;

R1 = R1 ⊕ R2;

637

(2) XOR:

R1 = R1 ⊕ R2;

R2 = R1 ⊕ R2;

R1 = R1 ⊕ R2;

But what about cyclic shifts such as:

ψk = R1 = R2 | . . . | Rk−1 = Rk | Rk = R1

for k > 2 ??

638

(2) XOR:

R1 = R1 ⊕ R2;

R2 = R1 ⊕ R2;

R1 = R1 ⊕ R2;

But what about cyclic shifts such as:

ψk = R1 = R2 | . . . | Rk−1 = Rk | Rk = R1

for k > 2 ??

Then at most k− 1 swaps of two registers are needed:

ψk = R1 ↔ R2;

R2 ↔ R3;

. . .

Rk−1 ↔ Rk;

639

Next complicated case: permutations.

• Every permutation can be decomposed into a set of disjoint

shifts :-)

• Any permutation of n registers with r shifts can be realized by

n− r swaps ...

640

Next complicated case: permutations.

• Every permutation can be decomposed into a set of disjoint

shifts :-)

• Any permutation of n registers with r shifts can be realized by

n− r swaps ...

Example

ψ = R1 = R2 | R2 = R5 | R3 = R4 | R4 = R3 | R5 = R1

consists of the cycles (R1, R2, R5) and (R3, R4). Therefore:

ψ = R1 ↔ R2;

R2 ↔ R5;

R3 ↔ R4;

641

The general case:

• Every register receives its value at most once.

• The assignment therefore can be decomposed into a

permutation together with tree-like assignments (directed

towards the leaves) ...

Example

ψ = R1 = R2 | R2 = R4 | R3 = R5 | R5 = R3

The parallel assignment realizes the linear register moves for

R1, R2 and R4 together with the cyclic shift for R3 and R5:

ψ = R1 = R2;

R2 = R4;

R3 ↔ R5;

642

Interprocedural Register Allocation:

→ For every local variable, there is an entry in the stack frame.

→ Before calling a function, these must be saved into the stack

frame and be restored after the call.

→ Sometimes there is hardware support :-)

Then the call is transparent for all registers.

→ If it is our responsibility to save and restore, we may ...

• save only registers which are over-written :-)

• restore overwritten registers only.

→ Alternatively, we save only registers which are still live after

the call — and then possibly into different registers ==⇒

reduction of life ranges :-)

643

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction after the other

strictly sequentially.

Here, we consider two approaches:

(1) VLIW (Very Large Instruction Words)

(2) Pipelining

644

VLIW:

One instruction simultaneously executes up to k (e.g., 4:-)

elementary Instructions.

Pipelining:

Instruction execution may overlap.

Example:

w = (R1 = R2 + R3 | D = D1 ∗ D2 | R3 = M[R4])

645

Warning:

• Instructions occupy hardware ressources.

• Instructions may access the same busses/registers ==⇒

hazards

• Results of an instruction may be available only after some

delay.

• During execution, different parts of the hardware are

involved:

Fetch Decode Execute Write

• During Execute and Write different internal

registers/busses/alus may be used.

646

We conclude:

Distributing the instruction sequence into sequences of words is

amenable to various constraints ...

In the following, we ignore the phases Fetch und Decode :-)

Examples for Constraints:

(1) at most one load/store per word;

(2) at most one jump;

(3) at most one write into the same register.

647

Example Timing:
Gleitkomma-Operation 3

Laden/Speichern 2

Integer-Arithmetik 1

Timing Diagram:

���
���
���

���
���
���

5 −1 2 0.3

R1 R2 R3 D

17.4

49

1

0

1

2

3

R3 is over-written, after the addition has fetched 2 :-)

648

If a register is accessed simultaneously (here: R3), a strategy of

conflict solving is required ...

Conflicts:

Read-Read: A register is simulatneously read.

==⇒ in general, unproblematic :-)

Read-Write: A register is simultaneously read and written.

Conflict Resolution:

• ... ruled out!

• Read is delayed (stalls), until write has terminated!

• Read before write returns old value!

649

Write-Write: A register is simultaneously written to.

==⇒ in general, unproblematic :-)

Conflict Resolutions:

• ... ruled out!

• ...

In Our Examples ...

• simultaneous read is permitted;

• simultaneous write/read and write/write is ruled out;

• no stalls are injected.

We first consider basic blocks only, i.e., linear sequences of

assignments ...

650

Idea: Data Dependence Graph

Vertices Instructions

Edges Dependencies

Example:

(1) x = x + 1;

(2) y = M[A];

(3) t = z;

(4) z = M[A + x];

(5) t = y + z;

651

Possible Dependencies:

Definition → Use // Reaching Definitions

Use → Definition // ???

Definition → Definition // Reaching Definitions

Reaching Definitions:

Determine for each u which definitions of may reach ==⇒

can be determined by means of a system of constraints :-)

... in the Example:

652

3

4

1

2

6

5

x = x + 1;

y = M[A];

t = z;

z = M[A + x];

t = y + z;

R

1 {〈x, 1〉, 〈y, 1〉, 〈z, 1〉, 〈t, 1〉}

2 {〈x, 2〉, 〈y, 1〉, 〈z, 1〉, 〈t, 1〉}

3 {〈x, 2〉, 〈y, 3〉, 〈z, 1〉, 〈t, 1〉}

4 {〈x, 2〉, 〈y, 3〉, 〈z, 1〉, 〈t, 4〉}

5 {〈x, 2〉, 〈y, 3〉, 〈z, 5〉, 〈t, 4〉}

6 {〈x, 2〉, 〈y, 3〉, 〈z, 5〉, 〈t, 6〉}

653

Let Ui, Di denote the sets of variables which are used or

defined at the edge outgoing from ui . Then:

(u1, u2) ∈ DD if u1 ∈ R[u2] ∧ D1 ∩ D2 6= ∅

(u1, u2) ∈ DU if u1 ∈ R[u2] ∧ D1 ∩U2 6= ∅

... in the Example:

Def Use

1 x = x + 1; {x} {x}

2 y = M[A]; {y} {A}

3 t = z; {t} {z}

4 z = M[A + x]; {z} {A, x}

5 t = y + z; {t} {y, z}
DU

DU DD

DU UD

DDDD DD DD

1 2 3

4

5

t = z;

z = M[A+ x];

t = y + z;

x = x + 1; y = M[A];

•

654

