
The UD-edge (3, 4) has been inserted to exclude that z is

over-written before use :-)

In the next step, each instruction is annotated with its (required

ressources, in particular, its) execution time.

Our goal is a maximally parallel correct sequence of words.

For that, we maintain the current system state:

Σ : Vars → N

Σ(x) =̂ expected delay until x is available

Initially:

Σ(x) = 0

As an invariant, we guarantee on entry of the basic block, that all

operations are terminated :-)

655



Then the slots of the word sequence are successively filled:

• We start with the minimal nodes in the dependence graph.

• If we fail to fill all slots of a word, we insert ; :-)

• After every inserted instruction, we re-compute Σ .

Warning:

→ The execution of two VLIWs can overlap !!!

→ Determining an optimal sequence, is NP-hard ...

656



Example: Word width k = 2

Word State

1 2 x y z t

0 0 0 0

x = x + 1 y = M[A] 0 1 0 0

t = z z = M[A + x] 0 0 1 0

0 0 0 0

t = y + z 0 0 0 0

In each cycle, the execution of a new word is triggered.

The state just records the number of cycles still to be waited for the

result :-)

657



Note:

• If instructions put constraints on future selection, we also

record these in Σ .

• Overall, we still distinuish just finitely many system states

:-)

• The computation of the effect of a VLIW onto Σ can be

compiled into a finite automaton !!!

• This automaton, though, could be quite huge :-(

• The challenge of making choices still remains :-(

• Basic blocks usually are not very large

==⇒ opportunities for parallelization are limited :-((

658



Extension 1: Acyclic Code

if (x > 1) {

y = M[A];

z = x− 1;

} else {

y = M[A+ 1];

z = x− 1;

}

y = y + 1;

The dependence graph must be enriched with extra

control-dependencies ...

659



DUDU

Pos Neg
z = x− 1;

y = M[A];

y = y + 1;

x > 1

y = M[A + 1];

•

The statement z = x− 1; is executed with the same arguments

in both branches and does not modify any of the remaining

variables :-)

We could have moved it before the if anyway :-))

660



The following code could be generated:

z = x− 1 if (!(x > 0)) goto A

y = M[A]

goto B

A : y = M[A+ 1]

B : y = y + 1

At every jump target, we guarantee the invariant :-(

661



If we allow several (known) states on entry of a sub-block, we can

generate code which complies with all of these.

... in the Example:

z = x− 1 if (!(x > 0)) goto A

y = M[A] goto B

A : y = M[A+ 1]

B :

y = y + 1

662



If this parallelism is not yet sufficient, we could try to speculatively

execute possibly useful tasks ...

For that, we require:

• an idea which alternative is executed more frequently;

• the wrong execution may not end in a catastrophy, i.e.,

run-time errors such as, e.g., division by 0;

• the wrong execution must allow roll-back (e.g., by delaying a

commit) or may not have any observational effects ...

663



... in the Example:

z = x− 1 y = M[A] if (x > 0) goto B

y = M[A+ 1]

B :

y = y + 1

In the case x ≤ 0 we have y = M[A] executed in advance.

This value, however, is overwritten in the next step :-)

In general:

x = e; has no observable effect in a branch if x is dead in this

branch :-)

664



Extension 2: Unroling of Loops

We may unrole important, i.e., inner loops several times:

PosNeg Pos

Pos
Neg

Neg

665



Now it is clear which side of tests to prefer:

the side which stays within the unroled body of the loop :-)

Warning:

• The different instances of the body are translated relative to

possibly different initial states :-)

• The code behind the loop must be correct relative to the exit

state corresponding to every jump out of the loop!

666



Example:

for (x = 0; x < n; x++)

M[A + x] = z;

1

0

2

3

4

5

x = 0;

Neg (x < n) Pos (x < n)

M[A+ x] = z;

x = x + 1;

Duplication of the body yields:

667



for (x = 0; x < n; x++) {

M[A+ x] = z;

x = x + 1;

if (!(x < n)) break;

M[A+ x] = z;

}
8

1

0

2

3

4

6

7

5

x = 0;

Neg (x < n) Pos (x < n)

M[A+ x] = z;

x = x + 1;

Pos (x < n)Neg (x < n)

M[A+ x] = z;

x = x + 1;

668



It would be better if we could remove the assignment x = x + 1;

together with the test in the middle — since these serialize the

execution of the copies !!

This is possible if we substitute x + 1 for x in the second copy,

transform the condition and add a compensation code:

for (x = 0; x + 1 < n; x = x + 2) {

M[A + x] = z;

M[A + x + 1] = z;

}

if (x < n) {

M[A + x] = z;

x = x + 1;

}

2

4

6

0

3

5

1

M[A + x] = z;

x = x + 2;

M[A + x] = z;

x = x + 1;

x = 0;

M[A + x + 1] = z;

Neg (x + 1 < n) Pos (x + 1 < n)

Pos (x < n)Neg (x < n)

669



Discussion:

• Elimination of the intermediate test together with the the

fusion of all increments at the end reveals that the different

loop iterations are in fact independent :-)

• Nonetheless, we do not gain much since we only allow one

store per word :-(

• If right-hand sides, however, are more complex, we can

interleave their evaluation with the stores :-)

670



Extension 3:

Sometimes, one loop alone does not provide enough opportunities

for parallelization :-(

... but perhaps two successively in a row :-)

Example:

for (x = 0; x < n; x++) {

R = B[x];

S = C[x];

T1 = R + S;

A[x] = T1;

}

for (x = 0; x < n; x++) {

R = B[x];

S = C[x];

T2 = R− S;

C[x] = T2;

}

671



In order to fuse two loops into one, we require that:

• the iteration schemes coincide;

• the two loops access different data.

In case of individual variables, this can easily be verified.

This is more difficult in presence of arrays.

Taking the source program into account, accesses to distinct

statically allocated arrays can be identified.

An analysis of accesses to the same array is significantly more

difficult ...

672



Assume that the blocks A, B, C are distinct.

Then we can combine the two loops into:

for (x = 0; x < n; x++) {

R = B[x];

S = C[x];

T1 = R + S;

A[x] = T1;

R = B[x];

S = C[x];

T2 = R− S;

C[x] = T2;

}

673



The first loop may in iteration x not read data which the

second loop writes to in iterations < x .

The second loop may in iteration x not read data which the first

loop writes to in iterations > x .

If the index expressions of jointly accessed arrays are linear, the

given constraints can be verified through integer linear

programming ...

i ≥ 0

i ≤ x− 1

xwrite = i

xread = x

xread = xwrite

// xread read access to C by 1st loop

// xwrite write access to C by 2nd loop

... obviously has no solution :-)

674



General Form:

i ≥ t1

t2 ≥ i

y1 = s1

y2 = s2

y1 = y2

for linear expressions s, t1, t2, s1, s2 over i and the iteration

variables.

This can be simplified to:

0 ≤ s− t1 0 ≤ t2 − s 0 = s1 − s2

What should we do with it ???

675


