Simple Case:
The two inequations have no solution over
Then they also have no solution over \mathbb{Z} :-)
... in Our Example:

$$
\left.\begin{array}{rl}
x & =i \\
0 & \leq i \\
0 & =x \\
0 & \leq x-1-i
\end{array}\right)=-1 .
$$

The second inequation has no solution :-)

Equal Signs:

If a variable x occurs in all inequations with the same sign, then there is always a solution

Example:

$$
\begin{aligned}
& 0 \leq 13+7 \cdot x \\
& 0 \leq-1+5 \cdot x
\end{aligned}
$$

The variable x may, e.g., be chosen as:

$$
x \geq \max \left(-\frac{13}{7}, \frac{1}{5}\right)=\frac{1}{5}
$$

Unequal Signs:

A variable x occurs in one inequation negative, in all others positive (if at all). Then a system can be constructed without x

Example:

$$
\begin{aligned}
& 0 \leq 13-7 \cdot x \\
& 0 \leq-1+5 \cdot x
\end{aligned} \Longleftrightarrow \begin{aligned}
& x \leq \frac{13}{7} \\
& 0 \leq-1+5 \cdot x
\end{aligned}
$$

Since $0 \leq-1+5 \cdot \frac{13}{7}$ the system has at least a rational solution

One Variable:

The inequations where x occurs positive, provide lower bounds.

The inequations where x occurs negative, provide upper bounds.

If G, L are the greatest lower and the least upper bound, respectively, then all (integer) solution are in the interval $[G, L]$:-)

Example:

$$
\begin{aligned}
& 0 \leq 13-7 \cdot x \\
& 0 \leq-1+5 \cdot x
\end{aligned} \Longleftrightarrow \begin{aligned}
& x \leq \frac{13}{7} \\
& x \geq \frac{1}{5}
\end{aligned}
$$

The only integer solution of the system is $\quad x=1 \quad:-)$

Discussion:

- Solutions only matter within the bounds to the iteration variables.
- Every integer solution there provides a conflict.
- Fusion of loops is possible if no conflicts occur :-)
- The given secial cases suffice to solve the case of two variables over \mathbb{Q} and of one variable over $\mathbb{Z} \quad$:-)
- The number of variables in the inequations corresponds to the nesting-depth of for-loops $\quad \Longrightarrow$ in general, is quite small :-)

Discussion:

- Integer Linear Programming (ILP) can decide satisfiability of a finite set of equations/inequations over \mathbb{Z} of the form:

$$
\sum_{i=1}^{n} a_{i} \cdot x_{i}=b \quad \text { bzw. } \quad \sum_{i=1}^{n} a_{i} \cdot x_{i} \geq b, \quad a_{i} \in \mathbb{Z}
$$

- Moreover, a (linear) cost function can be optimized :-)
- Warning: The decision problem is in general, already NP-hard !!!
- Notwithstanding that, surprisingly efficient implementations exist.
- Not just loop fusion, but also other re-organizations of loops yield ILP problems ...

Background 5: Presburger Arithmetic

Many problems in computer science can be formulated without multiplication :-)

Let us first consider two simple special cases ...

1. Linear Equations

$$
\begin{aligned}
2 x+3 y & =24 \\
x-y+5 z & =3
\end{aligned}
$$

Question:

- Is there a solution over \mathbb{Q} ?
- Is there a solution over \mathbb{Z} ?
- Is there a solution over \mathbb{N} ?

Let us reconsider the equations:

$$
\begin{aligned}
2 x+3 y & =24 \\
x-y+5 z & =3
\end{aligned}
$$

Answers:

- Is there a solution over \mathbb{Q} ? Yes
- Is there a solution over \mathbb{Z} ? No
- Is there a solution over \mathbb{N} ? No

Complexity:

- Is there a solution over \mathbb{Q} ? Polynomial
- Is there a solution over \mathbb{Z} ? Polynomial
- Is there a solution over \mathbb{N} ? NP-hard

Solution Method for Integers:

Observation 1:

$$
a_{1} x_{1}+\ldots+a_{k} x_{k}=b \quad\left(\forall i: a_{i} \neq 0\right)
$$

has a solution iff

$$
\operatorname{gcd}\left\{a_{1}, \ldots, a_{k}\right\} \quad \mid \quad b
$$

Example:

$$
5 y-10 z=18
$$

has no solution over \mathbb{Z} :-)

Example:

$$
5 y-10 z=18
$$

has no solution over \mathbb{Z} :-)

Observation 2:

Adding a multiple of one equation to another does not change the set of solutions :-)

Example:

$$
\begin{aligned}
2 x+3 y & =24 \\
x-y+5 z & =3
\end{aligned}
$$

Example:

$$
\begin{gathered}
2 x+3 y \quad=24 \\
x-y+5 z=3 \\
\\
\Longrightarrow
\end{gathered}
$$

$$
5 y-10 z=18
$$

$$
x-y+5 z=3
$$

Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

| 1 | 0 | -3 |
| ---: | ---: | ---: | ---: |
| 0 | 1 | 2 |
| 0 | 0 | 1 |$| x-y y=38$

\Longrightarrow triangular form !!

Observation 4:

- A special solution of a triangular system can be directly read off :-)
- All solutions of a homogeneous triangular system can be directly read off :-)
- All solutions of the original system can be recovered from the solutions of the triangular system by means of the accumulated transformation matrix:-))

Example

One special solution:

$$
[6,3,0]^{\top}
$$

All solutions of the homogeneous system are spanned by:

$$
[0,0,1]^{\top}
$$

Solving over \mathbb{N}

- ... is of major practical importance;
- ... has led to the development of many new techniques;
- ... easily allows to encode NP-hard problems;
- ... remains difficult if just three variables are allowed per equation.

2. One Polynomial Special Case:

$$
\begin{aligned}
x & \geq y+5 \\
19 \geq x & \\
y & \geq 13 \\
y & \geq x-7
\end{aligned}
$$

- There are at most 2 variables per in-equation; - no scaling factors.

Idea:
Represent the system by a graph:

The in-equations are satisfiable iff

- the weight of every cycle are at most 0;
- the weights of paths reaching x are bounded by the weights leaving x.

The in-equations are satisfiable iff

- the weight of every cycle are at most 0 ;
- the weights of paths reaching x are bounded by the weights leaving x.

Compute the reflexive and transitive closure of the edge weights!

3. A General Solution Method:

Idea: Fourier-Motzkin Elimination

- Successively remove individual variables x !
- All in-equations with positive occurrences of x yield lower bounds.
- All in-equations with negative occurrences of x yield upper bounds.
- All lower bounds must be at most as big as all upper bounds ;-))

Jean Baptiste Joseph Fourier, 1768-1830

Example:

$$
\begin{align*}
9 & \leq 4 x_{1}+x_{2} \tag{1}\\
4 & \leq x_{1}+2 x_{2} \tag{2}\\
0 & \leq 2 x_{1}-x_{2} \tag{3}\\
6 & \leq x_{1}+6 x_{2} \tag{4}\\
-11 & \leq-x_{1}-2 x_{2} \tag{5}\\
-17 & \leq-6 x_{1}+2 x_{2} \tag{6}\\
-4 & \leq-x_{2} \tag{7}
\end{align*}
$$

For x_{1} we obtain:

$$
\begin{align*}
9 & \leq 4 x_{1}+x_{2} \tag{1}\\
4 & \leq x_{1}+2 x_{2} \tag{2}\\
0 & \leq 2 x_{1}-x_{2} \tag{3}\\
6 & \leq x_{1}+6 x_{2} \tag{4}\\
-11 & \leq-x_{1}-2 x_{2} \tag{5}\\
-17 & \leq-6 x_{1}+2 x_{2} \tag{6}\\
-4 & \leq-x_{2}
\end{align*}
$$

$$
\frac{9}{4}-\frac{1}{4} x_{2} \leq x_{1}
$$

$$
\begin{equation*}
4-2 x_{2} \leq x_{1} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2} x_{2} \quad \leq x_{1} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
6-6 x_{2} \leq x_{1} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
x_{1} \leq 11-2 x_{2} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
x_{1} \quad \leq \frac{17}{6}+\frac{1}{3} x_{2} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
-4 \leq-x_{2} \tag{7}
\end{equation*}
$$

If such an x_{1} exists, all lower bounds must be bounded by all upper bounds, i.e.,

$$
\begin{align*}
& \frac{9}{4}-\frac{1}{4} x_{2} \leq 11-2 x_{2} \quad(1,5) \quad-35 \leq-7 x_{2} \tag{1,5}\\
& \frac{9}{4}-\frac{1}{4} x_{2} \leq \frac{17}{6}+\frac{1}{3} x_{2} \quad(1,6) \tag{1,6}\\
& -\frac{7}{12} \leq \frac{7}{12} x_{2} \\
& -7 \leq 0 \tag{2,5}\\
& \frac{7}{6} \leq \frac{7}{3} x_{2} \tag{2,6}\\
& \frac{1}{2} x_{2} \leq 11-2 x_{2} \tag{3,5}\\
& (3,5) \text { or } \\
& -22 \leq-5 x_{2} \\
& \frac{1}{2} x_{2} \leq \frac{17}{6}+\frac{1}{3} x_{2} \tag{3,6}\\
& (3,6) \\
& -\frac{17}{6} \leq-\frac{1}{6} x_{2} \\
& 6-6 x_{2} \leq 11-2 x_{2} \tag{4,5}\\
& -5 \leq 4 x_{2} \tag{4,5}\\
& 6-6 x_{2} \leq \frac{17}{6}+\frac{1}{3} x_{2} \tag{4,6}\\
& \frac{19}{6} \leq \frac{19}{3} x_{2} \tag{4,6}\\
& -4 \leq-x_{2} \tag{7}\\
& -4 \leq-x_{2} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& \frac{9}{4}-\frac{1}{4} x_{2} \leq 11-2 x_{2} \quad(1,5) \quad-5 \leq-x_{2} \quad(1,5) \\
& \frac{9}{4}-\frac{1}{4} x_{2} \leq \frac{17}{6}+\frac{1}{3} x_{2} \quad(1,6) \quad-1 \leq x_{2} \\
& -7 \leq 0 \\
& (2,5) \\
& 4-2 x_{2} \leq \frac{17}{6}+\frac{1}{3} x_{2} \quad(2,6) \quad \frac{1}{2} \leq x_{2} \tag{2,6}\\
& \frac{1}{2} x_{2} \leq 11-2 x_{2} \quad(3,5) \quad \text { or } \quad-\frac{22}{5} \leq-x_{2} \tag{3,5}\\
& \frac{1}{2} x_{2} \leq \frac{17}{6}+\frac{1}{3} x_{2} \quad(3,6) \tag{3,6}\\
& 6-6 x_{2} \leq 11-2 x_{2} \quad(4,5) \tag{4,5}\\
& 6-6 x_{2} \leq \frac{17}{6}+\frac{1}{3} x_{2} \quad(4,6) \tag{4,6}\\
& \text { (7) } \quad-4 \leq-x_{2} \tag{7}\\
& -4 \leq-x_{2} \tag{7}\\
& -17 \leq-x_{2} \\
& -\frac{5}{4} \leq x_{2} \\
& \frac{1}{2} \leq x_{2}
\end{align*}
$$

This is the one-variable case which we can solve exactly:

$$
\max \left\{-1, \frac{1}{2},-\frac{5}{4}, \frac{1}{2}\right\} \leq x_{2} \leq \min \left\{5, \frac{22}{5}, 17,4\right\}
$$

From which we conclude: $\left.\quad x_{2} \in\left[\frac{1}{2}, 4\right] \quad:-\right)$

In General:

- The original system has a solution over \mathbb{Q} iff the system after elimination of one variable has a solution over \mathbb{Q} :-)
- Every elimination step may square the number of in-equations \Longrightarrow exponential run-time
- It can be modified such that it also decides satisfiability over $\mathbb{Z} \Longrightarrow$ Omega Test

William Worthington Pugh, Jr.
University of Maryland, College Park

Idea:

- We successively remove variables. Thereby we omit division
- If x only occurs with coeffient ± 1, we apply Fourier-Motzkin elimination :-)
- Otherwise, we provide a bound for a positive multiple of x...

Consider, e.g., (1) and (6) :

$$
\begin{aligned}
6 \cdot x_{1} & \leq 17+2 x_{2} \\
9-x_{2} & \leq 4 \cdot x_{1}
\end{aligned}
$$

W.l.o.g., we only consider strict in-equations:

$$
\begin{aligned}
6 \cdot x_{1} & <18+2 x_{2} \\
8-x_{2} & <4 \cdot x_{1}
\end{aligned}
$$

... where we always divide by gcds:

$$
\begin{aligned}
3 \cdot x_{1} & <9+x_{2} \\
8-x_{2} & <4 \cdot x_{1}
\end{aligned}
$$

This implies:

$$
3 \cdot\left(8-x_{2}\right)<4 \cdot\left(9+x_{2}\right)
$$

We thereby obtain:

- If one derived in-equation is unsatisfiable, then also the overall system :-)
- If all derived in-equations are satisfiable, then there is a solution which, however, need not be integer
- An integer solution is guaranteed to exist if there is sufficient separation between lower and upper bound ...
- Assume $\alpha<a \cdot x \quad b \cdot x<\beta$.

Then it should hold that:

$$
b \cdot \alpha<a \cdot \beta
$$

and moreover:

$$
a \cdot b<a \cdot \beta-b \cdot \alpha
$$

... in the Example:

$$
12<4 \cdot\left(9+x_{2}\right)-3 \cdot\left(8-x_{2}\right)
$$

or:

$$
12<12+7 x_{2}
$$

or:

$$
0<x_{2}
$$

In the example, also these strengthened in-equations are satisfiable $\Longrightarrow \quad$ the system has a solution over $\mathbb{Z} \quad:-)$

Discussion:

- If the strengthened in-equations are satisfiable, then also the original system. The reverse implication may be wrong
- In the case where upper and lower bound are not sufficiently separated, we have:

$$
a \cdot \beta \leq b \cdot \alpha+a \cdot b
$$

or:

$$
b \cdot \alpha<a b \cdot x<b \cdot \alpha+a \cdot b
$$

Division with b yields:

$$
\begin{gathered}
\alpha<a \cdot x<\alpha+a \\
\Longrightarrow \quad \alpha+i=a \cdot x \quad \text { for some } \quad i \in\{1, \ldots, a-1\} \quad!!!
\end{gathered}
$$

Discussion (cont.):

$\rightarrow \quad$ Fourier-Motzkin Elimination is not the best method for rational systems of in-equations.
$\rightarrow \quad$ The Omega test is necessarily exponential $\quad:-$
If the system is solvable, the test generally terminates rapidly.

It may have problems with unsolvable systems
\rightarrow Also for ILP, there are other/smarter algorithms ...
\rightarrow For programming language problems, however, it seems to behave quite well :-)
4. Generalization to a Logic

Disjunction:

$$
\begin{array}{ll}
(x-2 y=15 & \wedge x+y=7) \\
(x+y=6 & \wedge 3 x+z=-8)
\end{array}
$$

Quantors:

$$
\exists x: \quad z-2 x=42 \wedge \quad z+x=19
$$

4. Generalization to a Logic

Disjunction:

$$
\begin{array}{ll}
(x-2 y=15 & \wedge x+y=7) \\
(x+y=6 & \wedge 3 x+z=-8)
\end{array}
$$

Quantors:

$$
\Longrightarrow
$$

$$
\begin{aligned}
& \exists x: z-2 x=42 \wedge z+x=19 \\
& \Rightarrow \quad \text { Presburger Arithmetic }
\end{aligned}
$$

Mojzesz Presburger, 1904-1943 (?)

Presburger Arithmetic

\qquad full arithmetic
without multiplication

Presburger Arithmetic
 $=$ full arithmetic
 without multiplication

Arithmetic : highly undecidable even incomplete

Presburger Arithmetic
 $=$ full arithmetic
 without multiplication

Arithmetic : highly undecidable :-(even incomplete

$\Longrightarrow \quad$ Hilbert's 10th Problem
\Longrightarrow Gödel's Theorem

