
Simple Case:

The two inequations have no solution over Q.

Then they also have no solution over Z :-)

... in Our Example:

x = i

0 ≤ i = x

0 ≤ x− 1− i = −1

The second inequation has no solution :-)
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Equal Signs:

If a variable x occurs in all inequations with the same sign, then

there is always a solution :-(

Example:

0 ≤ 13 + 7 · x

0 ≤ −1 + 5 · x

The variable x may, e.g., be chosen as:

x ≥ max(−
13

7
,
1

5
) =

1

5
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Unequal Signs:

A variable x occurs in one inequation negative, in all others

positive (if at all). Then a system can be constructed without x

...

Example:

0 ≤ 13− 7 · x

0 ≤ −1 + 5 · x
⇐⇒

x ≤ 13
7

0 ≤ −1 + 5 · x

Since 0 ≤ −1 + 5 · 13
7

the system has at least a rational solution

...
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One Variable:

The inequations where x occurs positive, provide lower

bounds.

The inequations where x occurs negative, provide upper

bounds.

If G, L are the greatest lower and the least upper bound,

respectively, then all (integer) solution are in the interval [G, L]

:-)

Example:

0 ≤ 13− 7 · x

0 ≤ −1 + 5 · x
⇐⇒

x ≤ 13
7

x ≥ 1
5

The only integer solution of the system is x = 1 :-)
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Discussion:

• Solutions only matter within the bounds to the iteration

variables.

• Every integer solution there provides a conflict.

• Fusion of loops is possible if no conflicts occur :-)

• The given secial cases suffice to solve the case of two

variables over Q and of one variable over Z :-)

• The number of variables in the inequations corresponds to

the nesting-depth of for-loops ==⇒ in general, is quite

small :-)
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Discussion:

• Integer Linear Programming (ILP) can decide satisfiability of

a finite set of equations/inequations over Z of the form:

n

∑
i=1

ai · xi = b bzw.
n

∑
i=1

ai · xi ≥ b , ai ∈ Z

• Moreover, a (linear) cost function can be optimized :-)

• Warning: The decision problem is in general, already

NP-hard !!!

• Notwithstanding that, surprisingly efficient implementations

exist.

• Not just loop fusion, but also other re-organizations of loops

yield ILP problems ...
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Background 5: Presburger Arithmetic

Many problems in computer science can be formulated without

multiplication :-)

Let us first consider two simple special cases ...

1. Linear Equations

2x + 3y = 24

x − y + 5z = 3
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Question:

• Is there a solution over Q ?

• Is there a solution over Z ?

• Is there a solution over N ?

Let us reconsider the equations:

2x + 3y = 24

x − y + 5z = 3
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Answers:

• Is there a solution over Q ? Yes

• Is there a solution over Z ? No

• Is there a solution over N ? No

Complexity:

• Is there a solution over Q ? Polynomial

• Is there a solution over Z ? Polynomial

• Is there a solution over N ? NP-hard
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Solution Method for Integers:

Observation 1:

a1x1 + . . . + akxk = b (∀ i : ai 6= 0)

has a solution iff

gcd{a1, . . . , ak} | b
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Example:

5y− 10z = 18

has no solution over Z :-)

Observation 2:

Adding a multiple of one equation to another does not change the

set of solutions.
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Example:

5y− 10z = 18

has no solution over Z :-)

Observation 2:

Adding a multiple of one equation to another does not change the

set of solutions :-)
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Example:

2x + 3y = 24

x − y + 5z = 3

==⇒

5y − 10z = 18

x − y + 5z = 3
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Example:

2x + 3y = 24

x − y + 5z = 3

==⇒

5y − 10z = 18

x − y + 5z = 3
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Observation 3:

Adding multiples of columns to another column is an invertible

transformation which we keep track of in a separate matrix ...

1 0 0 5y − 10z = 18

0 1 0 x − y + 5z = 3

0 0 1

==⇒

1 0 0 5y = 18

0 1 2 x − y + 3z = 3

0 0 1
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Observation 3:

Adding multiples of columns to another column is an invertible

transformation which we keep track of in a separate matrix ...

1 0 0 5y = 18

0 1 2 x − y + 3z = 3

0 0 1

==⇒

1 0 −3 5y = 18

0 1 2 x − y = 3

0 0 1

==⇒ triangular form !!
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Observation 4:

• A special solution of a triangular system can be directly read

off :-)

• All solutions of a homogeneous triangular system can be

directly read off :-)

• All solutions of the original system can be recovered from the

solutions of the triangular system by means of the

accumulated transformation matrix:-))
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Example

1 0 −3 5y = 15

0 1 2 x − y = 3

0 0 1

One special solution:

[6, 3, 0]⊤

All solutions of the homogeneous system are spanned by:

[0, 0, 1]⊤
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Solving over N

• ... is of major practical importance;

• ... has led to the development of many new techniques;

• ... easily allows to encode NP-hard problems;

• ... remains difficult if just three variables are allowed per

equation.
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2. One Polynomial Special Case:

x ≥ y + 5

19 ≥ x

y ≥ 13

y ≥ x− 7

• There are at most 2 variables per in-equation;

• no scaling factors.

695



Idea: Represent the system by a graph:

x y

5

−7

13

19
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The in-equations are satisfiable iff

• the weight of every cycle are at most 0;

• the weights of paths reaching x are bounded by the weights

leaving x.

==⇒

Compute the reflexive and transitive closure of the edge weights!
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x y

5

−7

13

19
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x y

5

−7

13

19
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x y

≤ 05−7 

5

−7

13

19

700



y

5

−7

13

19

x
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y

13+5 ≤ 19 

5

−7

13

19

x
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The in-equations are satisfiable iff

• the weight of every cycle are at most 0;

• the weights of paths reaching x are bounded by the weights

leaving x.

==⇒

Compute the reflexive and transitive closure of the edge weights!
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3. A General Solution Method:

Idea: Fourier-Motzkin Elimination

• Successively remove individual variables x !

• All in-equations with positive occurrences of x yield

lower bounds.

• All in-equations with negative occurrences of x yield

upper bounds.

• All lower bounds must be at most as big as all upper bounds

;-))
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Jean Baptiste Joseph Fourier, 1768–1830
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Example:

9 ≤ 4x1 + x2 (1)

4 ≤ x1 + 2x2 (2)

0 ≤ 2x1 − x2 (3)

6 ≤ x1 + 6x2 (4)

−11 ≤ −x1 − 2x2 (5)

−17 ≤ −6x1 + 2x2 (6)

−4 ≤ −x2 (7)

1

2

3

1 2 3 4 5

4

5

1

2

3

6

5
7
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For x1 we obtain:

9 ≤ 4x1 + x2 (1)

4 ≤ x1 + 2x2 (2)

0 ≤ 2x1 − x2 (3)

6 ≤ x1 + 6x2 (4)

−11 ≤ −x1 − 2x2 (5)

−17 ≤ −6x1 + 2x2 (6)

−4 ≤ −x2 (7)

9
4
− 1

4
x2 ≤ x1 (1)

4− 2x2 ≤ x1 (2)
1
2
x2 ≤ x1 (3)

6− 6x2 ≤ x1 (4)

x1 ≤ 11− 2x2 (5)

x1 ≤ 17
6

+ 1
3
x2 (6)

−4 ≤ −x2 (7)

If such an x1 exists, all lower bounds must be bounded by all

upper bounds, i.e.,

707



9
4
− 1

4
x2 ≤ 11− 2x2 (1, 5)

9
4
− 1

4
x2 ≤ 17

6
+ 1

3
x2 (1, 6)

4− 2x2 ≤ 11− 2x2 (2, 5)

4− 2x2 ≤ 17
6

+ 1
3
x2 (2, 6)

1
2
x2 ≤ 11− 2x2 (3, 5)

1
2
x2 ≤ 17

6
+ 1

3
x2 (3, 6)

6− 6x2 ≤ 11− 2x2 (4, 5)

6− 6x2 ≤ 17
6

+ 1
3
x2 (4, 6)

−4 ≤ −x2 (7)

or

−35 ≤ −7x2 (1, 5)

− 7
12

≤ 7
12
x2 (1, 6)

−7 ≤ 0 (2, 5)
7
6
≤ 7

3
x2 (2, 6)

−22 ≤ −5x2 (3, 5)

− 17
6

≤ − 1
6
x2 (3, 6)

−5 ≤ 4x2 (4, 5)
19
6

≤ 19
3
x2 (4, 6)

−4 ≤ −x2 (7)

This is the one-variable case which we can solve exactly:
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9
4
− 1

4
x2 ≤ 11− 2x2 (1, 5)

9
4
− 1

4
x2 ≤ 17

6
+ 1

3
x2 (1, 6)

4− 2x2 ≤ 11− 2x2 (2, 5)

4− 2x2 ≤ 17
6

+ 1
3
x2 (2, 6)

1
2
x2 ≤ 11− 2x2 (3, 5)

1
2
x2 ≤ 17

6
+ 1

3
x2 (3, 6)

6− 6x2 ≤ 11− 2x2 (4, 5)

6− 6x2 ≤ 17
6

+ 1
3
x2 (4, 6)

−4 ≤ −x2 (7)

or

−5 ≤ −x2 (1, 5)

−1 ≤ x2 (1, 6)

−7 ≤ 0 (2, 5)
1
2
≤ x2 (2, 6)

− 22
5

≤ −x2 (3, 5)

−17 ≤ −x2 (3, 6)

− 5
4
≤ x2 (4, 5)

1
2
≤ x2 (4, 6)

−4 ≤ −x2 (7)

This is the one-variable case which we can solve exactly:
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max {−1, 1
2
,− 5

4
, 1
2
} ≤ x2 ≤ min {5, 22

5
, 17, 4 }

From which we conclude: x2 ∈ [ 1
2
, 4] :-)

In General:

• The original system has a solution over Q iff the system after

elimination of one variable has a solution over Q :-)

• Every elimination step may square the number of

in-equations ==⇒ exponential run-time :-((

• It can be modified such that it also decides satisfiability over

Z ==⇒ Omega Test
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William Worthington Pugh, Jr.

University of Maryland, College Park
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Idea:

• We successively remove variables. Thereby we omit division

...

• If x only occurs with coeffient ±1, we apply

Fourier-Motzkin elimination :-)

• Otherwise, we provide a bound for a positive multiple of x ...

Consider, e.g., (1) and (6) :

6 · x1 ≤ 17 + 2x2

9− x2 ≤ 4 · x1
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W.l.o.g., we only consider strict in-equations:

6 · x1 < 18 + 2x2

8− x2 < 4 · x1

... where we always divide by gcds:

3 · x1 < 9 + x2

8− x2 < 4 · x1

This implies:

3 · (8− x2) < 4 · (9 + x2)
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We thereby obtain:

• If one derived in-equation is unsatisfiable, then also the

overall system :-)

• If all derived in-equations are satisfiable, then there is a

solution which, however, need not be integer :-(

• An integer solution is guaranteed to exist if there is sufficient

separation between lower and upper bound ...

• Assume α < a · x b · x < β .

Then it should hold that:

b ·α < a ·β

and moreover:

a · b < a ·β − b ·α
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... in the Example:

12 < 4 · (9 + x2)− 3 · (8− x2)

or:

12 < 12 + 7x2

or:

0 < x2

In the example, also these strengthened in-equations are satisfiable

==⇒ the system has a solution over Z :-)
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Discussion:

• If the strengthened in-equations are satisfiable, then also the

original system. The reverse implication may be wrong :-(

• In the case where upper and lower bound are not sufficiently

separated, we have:

a ·β ≤ b ·α + a · b

or:

b ·α < ab · x < b ·α + a · b

Division with b yields:

α < a · x < α + a

==⇒ α + i = a · x for some i ∈ {1, . . . , a− 1} !!!
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Discussion (cont.):

→ Fourier-Motzkin Elimination is not the best method for

rational systems of in-equations.

→ The Omega test is necessarily exponential :-)

If the system is solvable, the test generally terminates

rapidly.

It may have problems with unsolvable systems :-(

→ Also for ILP, there are other/smarter algorithms ...

→ For programming language problems, however, it seems to

behave quite well :-)
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4. Generalization to a Logic

Disjunction:

(x− 2y = 15 ∧ x + y = 7) ∨

(x + y = 6 ∧ 3x + z = −8)

Quantors:

∃ x : z− 2x = 42 ∧ z + x = 19

==⇒ Presburger Arithmetic
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4. Generalization to a Logic

Disjunction:

(x− 2y = 15 ∧ x + y = 7) ∨

(x + y = 6 ∧ 3x + z = −8)

Quantors:

∃ x : z− 2x = 42 ∧ z + x = 19

==⇒ Presburger Arithmetic
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Mojzesz Presburger, 1904–1943 (?)
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Presburger Arithmetic == full arithmetic

without multiplication

Arithmetik : highly undecidable :-(

even incomplete :-((

==⇒ Hilbert’s 10th Problem

==⇒ Gödel’s Theorem
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Presburger Arithmetic == full arithmetic

without multiplication

Arithmetic : highly undecidable :-(

even incomplete :-((

==⇒ Hilbert’s 10th Problem

==⇒ Gödel’s Theorem
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Presburger Arithmetic == full arithmetic

without multiplication

Arithmetic : highly undecidable :-(

even incomplete :-((

==⇒ Hilbert’s 10th Problem

==⇒ Gödel’s Theorem
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