L1 (o, 1) = (o, 1)

[Pos ()] (o, 1) = (o 1) if e] p # 0
if [e] p=0

Z
®
Q9
—~
N
~—
=
~—~
Q
=
~—
I
~—~
Q
=
~—~—

28



L1 (o 1) = (o)

[Pos ()] (o, 1) = (o 1) if e] p # 0
[Neg (e)] (o, 1) = (o 1) if [e] p = 0
// le] : evaluation of the expression ¢, e.g.

/) Tx+yl{x— 7,y —1} =6
/| Ix==4)] {x—5} =1

29



L1 (o, 1) = (o, 1)

[Pos ()] (o, 1) = (o 1) if e] p # 0
[Neg (e)] (o, 1) = (p, 1) if [e] p=0
// le] : evaluation of the expression ¢, e.g.

/) [+l {x 7,y —1} =6
/) [ix == 4] {x—5} =1

[R=¢](p,n) = (pD{R~— [e]p}|n)

// where “@” modifies a mapping at a given argument

30



[R = Mlel;[ (o,n) =

/N

pD{R — u(le]p))}| 1)

[Mlea] = e2; ]| (o, 11) = (0, D {llea] p = [ea]) £} ])

Example:
[x=x+1,] {x—5},u) =(p,u) where:
p = (x50 {x— [x+1]{x— 5};

= {x—5}&{x— 6}
— {x6)

31



Apath m=kk,...k, isacomputation for the state s if:

s € def ([kn]o...o[ki])

The result of the computation is:

[7]s = ([ku] o...0[ki])s

Application:
Assume that we have computed the value of redx + y at program
point u:
X+y
O——=@

We perform a computation along path 7r and reach v where we
evaluate again x + v ...

32



Idea:

If x and y have not been modified in 77, then evaluation of x + v at
v must return the same value as evaluation at u  :-)

We can check this property at every edgein m  :-}

33



Idea:

If x and y have not been modified in 77, then evaluation of x + v at
v must return the same value as evaluation at u  :-)

We can check this property at every edgein m  :-}

More generally:

Assume that the values of the expressions A = {ey,...,e,} are
available at u.

34



Idea:

If x and y have not been modified in 77, then evaluation of x + v at
v must return the same value as evaluation at u  :-)

We can check this property at every edgein m  :-}

More generally:

Assume that the values of the expressions A = {ey,...,e,} are
available at u.

Every edge k transforms this set into aset [k]* A of expressions
whose values are available after execution of k ...

35



... which transformations can be composed to the effect of a path
T = k1 ce kri

[7]* = [k]Fo...o[k]

36



... which transformations can be composed to the effect of a path
T = k1 ce kri

[7]* = [k]Fo...o[k]

The effect [k]* ofanedge k= (u,lab,v) only depends on
the label lab, i.e., [k]* = [lab]*

37



... which transformations can be composed to the effect of a path
T = k1 ce kri

[7]* = [k]Fo...o[k]

The effect [k]* ofanedge k= (u,lab,v) only depends on
the label lab,i.e., [k]* = [lab]* where:

[IF A = A
[Pos(e)]* A = [Neg(e)]* A = Aul{e}
[x=¢]PA = (AU{e})\Expr, where

Expr . all expressions which contain x

38



[x =Mle[[[FA = (AU{e})\Expr,
[Mle1] =e;]*A = AU{e, e}

39



[x = Mle[;]* A (AU {e})\Expr,
[Mle1] = e;]PA = AU{e, e}

By that, every path can be analyzed :-)
A given program may admit several paths  :(

For any given input, another path may be chosen :-((

40



[x = Mle[;]* A (AU {e})\Expr,
[Mle1] = e;]PA = AU{e, e}

By that, every path can be analyzed :-)
A given program may admit several paths  :(

For any given input, another path may be chosen :-((

—— We require the set:

Aol = (WI#]*0 | 7 : start —* v}

41



Concretely:

—  We consider all paths 7r which reach v.

—  For every path 71, we determine the set of expressions which
are available along 7.

—  Initially at program start, nothing is available :-)

—  We compute the intersection == safe information

42



Concretely:

—  We consider all paths 7r which reach v.

—  For every path 71, we determine the set of expressions which
are available along 7.

—  Initially at program start, nothing is available :-)

—  We compute the intersection == safe information

How do we exploit this information ??7?

43



Transformation 1.1:

We provide novel registers T, as storage for the e:

44



Transformation 1.1:

We provide novel registers T, as storage for the e:

@
Neg (e) Pos (e) ﬁ ?Te

Neg (T, Pos (



.. analogously for R = Mle|; and M]e;] = ey;.

Transformation 1.2:

If e is available at program point 1, then ¢ need not be re-evaluated:

We replace the assignment with Nop :-)

46



Example:

v+ 3;

y+3;

47

X =1y+3;
X =17
z=1Yy+3;



Example:

y+3;

v+ 3;

48



Example:

y+3;

v+ 3;

T'=vy+3;
{y+3}

x=T;
{y+3}

X =7
{y+3}

T =vy+3;

49



Example:

y+3;

v+ 3;

T'=vy+3;
{y +3}

x=1T;
{y +3}

X =17
{y +3}

50



Correctness:  (Idea)

Transformation 1.1 preserves the semantics and .A|u] for all
program points 1 :-)

Assume 7 : start —* u is the path taken by a computation.

If e € Alu], then also ¢ € [7r]* 0.

Therefore, 7t can be decomposed into:

70 g Sy

with the following properties:

51



The expression ¢ is evaluated at the edge k;

The expression ¢ is not removed from the set of available
expressions at any edge in 71, i.e., no variable of ¢ receives a
new value :-)

52



e The expression ¢ is evaluated at the edge k;

o The expression ¢ is not removed from the set of available
expressions at any edge in 71, i.e., no variable of ¢ receives a
new value :-)

The register T, contains the value of ¢ whenever u is reached :-))

53



Warning:

Transformation 1.1 is only meaningful for assignments x = ¢;
where:

—  x & Vars(e);
— e & Vars;

—  the evaluation of ¢ is non-trivial :-}

54



Warning:

Transformation 1.1 is only meaningful for assignments x = ¢;
where:

—  x & Vars(e);
— e & Vars;

—  the evaluation of ¢ is non-trivial :-}

Which leaves us with the following question ...

55



Question:

How do we compute A|u] for every program point u  ??

56



Question:

How can we compute A|u] for every program point 1 ??

We collect all restrictions to the values of A[u] into a system of
constraints:

Alstart]
Alv]

ARG

[k]* (Afu]) k= (u,_,v) edge

57



Wanted:

e amaximally large solution (??)

e an algorithm which computes this :-)

Example:

58



Wanted:

e amaximally large solution (??)

e an algorithm which computes this :-)

Example:

59



Wanted:

e amaximally large solution (??)

e an algorithm which computes this :-)

Example:

Al0] € 0
A[l] C (A[OJU{1})\Expr,
All] € A[4]

60



Wanted:

e amaximally large solution (??)

e an algorithm which computes this :-)

Example:

61

IORNAENIONS



Wanted:

e amaximally large solution

e an algorithm which computes this

Example:

62

)

IORNARNIAENIANNIG



Wanted:

e amaximally large solution (??)

e an algorithm which computes this

Example:

63

IORNARNIOENARNIANNG



Wanted:

e amaximally large solution (??)

e an algorithm which computes this

Example:

64

IOENANNIARRARNIARNIANNIG



Wanted:

e amaximally large solution (??)

e an algorithm which computes this :-)

Example:

Solution:

A0] = 0

Al1] {1}
ARl = {1,x>1)
A[B] = {1,x>1}
Al4] {1}
A5l = {1,x>1}

65



Observation:

e The possible values for A|u] form a complete lattice:

D =28 with B;C B, iff B; D B,

66



Observation:

e The possible values for A|u] form a complete lattice:

D =28 with B;C B, iff B; D B,

e The functions [kJ*: D — D are monotonic, i.e.,

[K]*(B:) C [k]*(B,) iff B; C B,

67



Background 2: complete Lattices

A set D together with arelation [C C D x D isa partial order if
foralla,b,c € D,

al a reflexivity
aCbANDCa = a=0D anti—symmetry
aCbANbDCc — alc transitivity

Examples: a,b,c

1. D = 212} with the relation “C” :

68



3. Z with the relation “="":

3. 7 with the relation “<” :

a9

4. 7, = ZUA{L} with the ordering:

o

69



d € D is called upper bound for X C D if

xCd forallx € X

70



d € D is called upper bound for X C D if

xCd forallx € X

d is called least upper bound (lub) if
1. d is an upper bound and

2. d C y for every upper bound y of X.

71



d € D is called upper bound for X C D if

xCd forallx € X

d is called least upper bound (lub) if
1. d is an upper bound and

2. d C y for every upper bound y of X.
Warning:

e {0,2,4,...} CZhasno upper bound!
e {0,2,4} C Z has the upper bounds 4, 5,6, ...

72



