
[[;]] (ρ,µ) = (ρ,µ)

[[Pos (e)]] (ρ,µ) = (ρ,µ) if [[e]]ρ 6= 0

[[Neg (e)]] (ρ,µ) = (ρ,µ) if [[e]]ρ = 0

// [[e]] : evaluation of the expression e, z.B.

// [[x + y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ,µ) = (ρ ⊕ {R 7→ [[e]]ρ} , mu)

// where “⊕” modifies a mapping at a given argument

28

[[;]] (ρ,µ) = (ρ,µ)

[[Pos (e)]] (ρ,µ) = (ρ,µ) if [[e]]ρ 6= 0

[[Neg (e)]] (ρ,µ) = (ρ,µ) if [[e]]ρ = 0

// [[e]] : evaluation of the expression e, e.g.

// [[x + y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ,µ) = (ρ ⊕ {R 7→ [[e]]ρ} ,µ)

// where “⊕” modifies a mapping at a given argument

29

[[;]] (ρ,µ) = (ρ,µ)

[[Pos (e)]] (ρ,µ) = (ρ,µ) if [[e]]ρ 6= 0

[[Neg (e)]] (ρ,µ) = (ρ,µ) if [[e]]ρ = 0

// [[e]] : evaluation of the expression e, e.g.

// [[x + y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ,µ) = (ρ ⊕ {R 7→ [[e]]ρ} ,µ)

// where “⊕” modifies a mapping at a given argument

30

[[R = M[e];]] (ρ,µ) = (ρ ⊕ {R 7→ µ([[e]]ρ))} ,µ)

[[M[e1] = e2;]] (ρ,µ) = (ρ, µ ⊕ {[[e1]]ρ 7→ [[e2]]ρ})

Example:

[[x = x + 1;]] ({x 7→ 5},µ) = (ρ,µ) where:

ρ = {x 7→ 5} ⊕ {x 7→ [[x + 1]] {x 7→ 5}}

= {x 7→ 5} ⊕ {x 7→ 6}

= {x 7→ 6}

31

A path π = k1k2 . . . km is a computation for the state s if:

s ∈ def ([[km]] ◦ . . . ◦ [[k1]])

The result of the computation is:

[[π]] s = ([[km]] ◦ . . . ◦ [[k1]]) s

Application:

Assume that we have computed the value of redx + y at program

point u:

u v
x+y

π

We perform a computation along path π and reach v where we

evaluate again x + y ...

32

Idea:

If x and y have not been modified in π , then evaluation of x + y at

v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions A = {e1, . . . , er} are

available at u.

Every edge k transforms this set into a set [[k]]♯ A of expressions

whose values are available after execution of k ...

33

Idea:

If x and y have not been modified in π , then evaluation of x + y at

v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions A = {e1, . . . , er} are

available at u.

Every edge k transforms this set into a set [[k]]♯ A of expressions

whose values are available after execution of k ...

34

Idea:

If x and y have not been modified in π , then evaluation of x + y at

v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions A = {e1, . . . , er} are

available at u.

Every edge k transforms this set into a set [[k]]♯ A of expressions

whose values are available after execution of k ...

35

... which transformations can be composed to the effect of a path

π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on

the label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯ A = A

[[Pos(e)]]♯ A = [[Neg(e)]]♯ A = A ∪ {e}

[[x = e;]]♯ A = (A ∪ {e})\ itExprx where

Exprx all expressions which contain x

36

... which transformations can be composed to the effect of a path

π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on

the label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯ A = A

[[Pos(e)]]♯ A = [[Neg(e)]]♯ A = A ∪ {e}

[[x = e;]]♯ A = (A ∪ {e})\Exprx where

Exprx all expressions which contain x

37

... which transformations can be composed to the effect of a path

π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on

the label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯ A = A

[[Pos(e)]]♯ A = [[Neg(e)]]♯ A = A ∪ {e}

[[x = e;]]♯ A = (A ∪ {e})\Exprx where

Exprx all expressions which contain x

38

[[x = M[e];]]♯ A = (A ∪ {e})\Exprx

[[M[e1] = e2;]]♯ A = A ∪ {e1, e2}

39

[[x = M[e];]]♯ A = (A ∪ {e})\Exprx

[[M[e1] = e2;]]♯ A = A ∪ {e1, e2}

By that, every path can be analyzed :-)

A given program may admit several paths :-(

For any given input, another path may be chosen :-((

40

[[x = M[e];]]♯ A = (A ∪ {e})\Exprx

[[M[e1] = e2;]]♯ A = A ∪ {e1, e2}

By that, every path can be analyzed :-)

A given program may admit several paths :-(

For any given input, another path may be chosen :-((

==⇒ We require the set:

A[v] =
⋂
{[[π]]♯∅ | π : start →∗ v}

41

Concretely:

→ We consider all paths π which reach v.

→ For every path π , we determine the set of expressions which

are available along π .

→ Initially at program start, nothing is available :-)

→ We compute the intersection ==⇒ safe information

How do we exploit this information ???

42

Concretely:

→ We consider all paths π which reach v.

→ For every path π , we determine the set of expressions which

are available along π .

→ Initially at program start, nothing is available :-)

→ We compute the intersection ==⇒ safe information

How do we exploit this information ???

43

Transformation 1.1:

We provide novel registers Te as storage for the e:

v

u

v

u

Te = e;

x = Te;

x = e;

44

Transformation 1.1:

We provide novel registers Te as storage for the e:

v

u

u

v v

Pos (e)

v

u

v

u

Te = e;

x = Te;

Neg (e)

x = e;

Te = e;

v

Pos (Te)Neg (Te)

45

... analogously for R = M[e]; and M[e1] = e2;.

Transformation 1.2:

If e is available at program point u, then e need not be re-evaluated:

u u

Te = e; ;

e ∈ A[u]

We replace the assignment with Nop :-)

46

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

z = y + 3;

x = y + 3;

47

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

T = y + 3;

x = T;

T = y + 3;

z = T;

48

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

z = T;

T = y + 3;

x = T;

T = y + 3;

{y + 3}

{y + 3}

{y + 3}

49

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

T = y + 3;

x = T;

;

z = T;

{y + 3}

{y + 3}

{y + 3}

50

Correctness: (Idea)

Transformation 1.1 preserves the semantics and A[u] for all

program points u :-)

Assume π : start →∗ u is the path taken by a computation.

If e ∈ A[u], then also e ∈ [[π]]♯ ∅.

Therefore, π can be decomposed into:

start u1 u2 u
π1 π2k

with the following properties:

51

• The expression e is evaluated at the edge k;

• The expression e is not removed from the set of available

expressions at any edge in π2, i.e., no variable of e receives a

new value :-)

==⇒

The register Te contains the value of e whenever u is reached :-))

52

• The expression e is evaluated at the edge k;

• The expression e is not removed from the set of available

expressions at any edge in π2, i.e., no variable of e receives a

new value :-)

==⇒

The register Te contains the value of e whenever u is reached :-))

53

Warning:

Transformation 1.1 is only meaningful for assignments x = e;

where:

→ x 6∈ Vars(e);

→ e 6∈ Vars;

→ the evaluation of e is non-trivial :-}

Which leaves open whether ...

54

Warning:

Transformation 1.1 is only meaningful for assignments x = e;

where:

→ x 6∈ Vars(e);

→ e 6∈ Vars;

→ the evaluation of e is non-trivial :- }

Which leaves us with the following question ...

55

Question:

How do we compute A[u] for every program point u ??

Idea:

We collect all restrictions to the values of A[u] into a system of

constraints:

A[start] ⊆ ∅

A[v] ⊆ [[k]]♯ (A[u]) k = (u, _, v) edge

56

Question:

How can we compute A[u] for every program point u ??

Idea:

We collect all restrictions to the values of A[u] into a system of

constraints:

A[start] ⊆ ∅

A[v] ⊆ [[k]]♯ (A[u]) k = (u, _, v) edge

57

Wanted:

• a maximally large solution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

58

Wanted:

• a maximally large solution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

59

Wanted:

• a maximally large solution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

60

Wanted:

• a maximally large solution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

61

Wanted:

• a maximally large solution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expry

62

Wanted:

• a maximally large solution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expry

A[4] ⊆ (A[3] ∪ {x− 1})\Exprx

63

Wanted:

• a maximally large solution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expry

A[4] ⊆ (A[3] ∪ {x− 1})\Exprx

A[5] ⊆ A[1] ∪ {x > 1}

64

Wanted:

• a maximally large solution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

Solution:

A[0] = ∅

A[1] = {1}

A[2] = {1, x > 1}

A[3] = {1, x > 1}

A[4] = {1}

A[5] = {1, x > 1}

65

Observation:

• The possible values for A[u] form a complete lattice:

D = 2Expr with B1 ⊑ B2 iff B1 ⊇ B2

• The functions [[k]]♯ : D → D are monotonic, i.e.,

[[k]]♯(B1) ⊑ [[k]]♯(B2) gdw. B1 ⊑ B2

66

Observation:

• The possible values for A[u] form a complete lattice:

D = 2Expr with B1 ⊑ B2 iff B1 ⊇ B2

• The functions [[k]]♯ : D → D are monotonic, i.e.,

[[k]]♯(B1) ⊑ [[k]]♯(B2) iff B1 ⊑ B2

67

Background 2: complete Lattices

A set D together with a relation ⊑ ⊆ D×D is a partial order if

for all a, b, c ∈ D,

a ⊑ a reflexivity

a ⊑ b ∧ b ⊑ a =⇒ a = b anti−symmetry

a ⊑ b ∧ b ⊑ c =⇒ a ⊑ c transitivity

Examples:

1. D = 2{a,b,c} with the relation “⊆” :

a, b, c

a, b a, c b, c

a b c

68

3. Z with the relation “=” :

210-1-2

3. Z with the relation “≤” :

0
-1

1
2

4. Z⊥ = Z∪ {⊥} with the ordering:

210-1-2

⊥

69

d ∈ D is called upper bound for X ⊆ D if

x ⊑ d for all x ∈ X

d is called least upper bound (lub) if

1. d is an upper bound and

2. d ⊑ y for every upper bound y of X.

Warning:

• has no upper bound!

• has the upper bounds

70

d ∈ D is called upper bound for X ⊆ D if

x ⊑ d for all x ∈ X

d is called least upper bound (lub) if

1. d is an upper bound and

2. d ⊑ y for every upper bound y of X.

Warning:

• has no upper bound!

• has the upper bounds

71

d ∈ D is called upper bound for X ⊆ D if

x ⊑ d for all x ∈ X

d is called least upper bound (lub) if

1. d is an upper bound and

2. d ⊑ y for every upper bound y of X.

Warning:

• {0, 2, 4, . . .} ⊆ Z has no upper bound!

• {0, 2, 4} ⊆ Z has the upper bounds 4, 5, 6, . . .

72

