$$
\llbracket ; \rrbracket(\rho, \mu) \quad=(\rho, \mu)
$$

$$
\llbracket \operatorname{Pos}(e) \rrbracket(\rho, \mu)=(\rho, \mu)
$$

$$
\llbracket \operatorname{Neg}(e) \rrbracket(\rho, \mu)=(\rho, \mu)
$$

if $\llbracket e \rrbracket \rho \neq 0$
if $\llbracket e \rrbracket \rho=0$

$$
\begin{array}{lll}
\llbracket ; \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\llbracket \operatorname{Pos}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho \neq 0 \\
\llbracket \operatorname{Neg}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho=0
\end{array}
$$

// $\llbracket e \rrbracket: \quad$ evaluation of the expression e, e.g.

$$
\begin{aligned}
& / / \quad \llbracket x+y \rrbracket\{x \mapsto 7, y \mapsto-1\}=6 \\
& / / \quad \llbracket!(x==4) \rrbracket\{x \mapsto 5\}=1
\end{aligned}
$$

$$
\begin{array}{lll}
\llbracket ; \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\llbracket \operatorname{Pos}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \text { if } \llbracket \rrbracket \rrbracket \rho \neq 0 \\
\llbracket \operatorname{Neg}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho=0
\end{array}
$$

$/ / \llbracket e \rrbracket: ~ e v a l u a t i o n ~ o f ~ t h e ~ e x p r e s s i o n ~ e, ~ e . g . ~$

$$
/ / \llbracket x+y \rrbracket\{x \mapsto 7, y \mapsto-1\}=6
$$

$$
/ / \llbracket!(x==4) \rrbracket\{x \mapsto 5\}=1
$$

$$
\llbracket R=e ; \rrbracket(\rho, \mu)=(\rho \oplus\{R \mapsto \llbracket e \rrbracket \rho\}, \mu)
$$

where " \oplus " modifies a mapping at a given argument

$$
\left.\begin{array}{l}
\llbracket R=M[e] ; \rrbracket(\rho, \mu)=(\rho \oplus\{R \mapsto \mu(\llbracket e \rrbracket \rho))\}, \mu) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket(\rho, \mu)=\left(\rho, \mu \oplus\left\{\llbracket e_{1} \rrbracket \rho \mapsto \llbracket e_{2} \rrbracket \rho\right\}\right.
\end{array}\right)
$$

Example:

$$
\begin{aligned}
& \llbracket x=x+1 ; \rrbracket(\{x \mapsto 5\}, \mu)=(\rho, \mu) \quad \text { where: } \\
& \qquad \begin{aligned}
\rho & =\{x \mapsto 5\} \oplus\{x \mapsto \llbracket x+1 \rrbracket\{x \mapsto 5\}\} \\
& =\{x \mapsto 5\} \oplus\{x \mapsto 6\} \\
& =\{x \mapsto 6\}
\end{aligned}
\end{aligned}
$$

A path $\pi=k_{1} k_{2} \ldots k_{m}$ is a computation for the state s if:

$$
s \in \operatorname{def}\left(\llbracket k_{m} \rrbracket \circ \ldots \circ \llbracket k_{1} \rrbracket\right)
$$

The result of the computation is:

$$
\llbracket \pi \rrbracket s=\left(\llbracket k_{m} \rrbracket \circ \ldots \circ \llbracket k_{1} \rrbracket\right) s
$$

Application:

Assume that we have computed the value of red $x+y$ at program point u :

We perform a computation along path π and reach v where we evaluate again $x+y \ldots$

Idea:

If x and y have not been modified in π, then evaluation of $x+y$ at v must return the same value as evaluation at $u \quad:-)$

We can check this property at every edge in $\pi \quad$:-\}

Idea:

If x and y have not been modified in π, then evaluation of $x+y$ at v must return the same value as evaluation at u :-)

We can check this property at every edge in $\pi \quad$:-\}

More generally:

Assume that the values of the expressions $A=\left\{e_{1}, \ldots, e_{r}\right\}$ are available at u.

Idea:

If x and y have not been modified in π, then evaluation of $x+y$ at v must return the same value as evaluation at u :-)

We can check this property at every edge in $\pi \quad$:-\}

More generally:

Assume that the values of the expressions $A=\left\{e_{1}, \ldots, e_{r}\right\}$ are available at u.

Every edge k transforms this set into a set $\quad \llbracket k \rrbracket^{\sharp} A$ of expressions whose values are available after execution of k...
... which transformations can be composed to the effect of a path $\pi=k_{1} \ldots k_{r}$:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp \circ} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}
$$

... which transformations can be composed to the effect of a path $\pi=k_{1} \ldots k_{r}:$

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}
$$

The effect $\llbracket k \rrbracket^{\sharp}$ of an edge $k=(u, l a b, v) \quad$ only depends on the label lab, i.e., $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp}$
... which transformations can be composed to the effect of a path $\pi=k_{1} \ldots k_{r}:$

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}
$$

The effect $\llbracket k \rrbracket^{\sharp}$ of an edge $k=(u, l a b, v) \quad$ only depends on the label lab, i.e., $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ where:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} A & =A \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} A & =\llbracket N e g(e) \rrbracket^{\sharp} A \quad=A \cup\{e\} \\
\llbracket x=e ; \rrbracket^{\sharp} A & =(A \cup\{e\}) \backslash E x p r_{x} \quad \text { where } \\
& \text { Expr } \quad \text { all expressions which contain } x
\end{array}
$$

$$
\begin{aligned}
& \llbracket x=M[e] ; \mathbb{\rrbracket}^{\sharp} A=(A \cup\{e\}) \backslash \operatorname{Expr}_{x} \\
& \llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} A=A \cup\left\{e_{1}, e_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket x=M[e] ; \mathbb{\rrbracket}^{\sharp} A=(A \cup\{e\}) \backslash \operatorname{Expr}_{x} \\
& \llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} A=A \cup\left\{e_{1}, e_{2}\right\}
\end{aligned}
$$

By that, every path can be analyzed :-)
A given program may admit several paths :-(
For any given input, another path may be chosen :-((

$$
\begin{aligned}
& \llbracket x=M[e] ; \mathbb{\rrbracket}^{\sharp} A=(A \cup\{e\}) \backslash \operatorname{Expr}_{x} \\
& \llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} A=A \cup\left\{e_{1}, e_{2}\right\}
\end{aligned}
$$

By that, every path can be analyzed :-)
A given program may admit several paths :-(
For any given input, another path may be chosen :-((
\Longrightarrow We require the set:

$$
\mathcal{A}[v]=\bigcap\left\{\llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Concretely:

$\rightarrow \quad$ We consider all paths π which reach v.
$\rightarrow \quad$ For every path π, we determine the set of expressions which are available along π.
\rightarrow Initially at program start, nothing is available :-)
\rightarrow We compute the intersection \Longrightarrow safe information

Concretely:

$\rightarrow \quad$ We consider all paths π which reach v.
$\rightarrow \quad$ For every path π, we determine the set of expressions which are available along π.
\rightarrow Initially at program start, nothing is available :-)
\rightarrow We compute the intersection \Longrightarrow safe information

How do we exploit this information ???

Transformation 1.1:

We provide novel registers T_{e} as storage for the e :

Transformation 1.1:

We provide novel registers T_{e} as storage for the e :

... analogously for $\quad R=M[e] ;$ and $\quad M\left[e_{1}\right]=e_{2} ;$.

Transformation 1.2:

If e is available at program point u, then e need not be re-evaluated:

We replace the assignment with Nop :-)

Example:

$$
\begin{aligned}
x & =y+3 \\
x & =7 \\
z & =y+3
\end{aligned}
$$

Example:

$$
\begin{aligned}
x & =y+3 \\
x & =7 \\
z & =y+3
\end{aligned}
$$

Example:

$$
x=y+3 ; \quad\{y+3\}
$$

Example:

$$
\begin{array}{ll}
x=y+3 ; & \{y+3\} \\
x=7 ; & \{y+3\} \\
z=y+3 ; & \{y+3\}
\end{array}
$$

Correctness: (Idea)

Transformation 1.1 preserves the semantics and $\mathcal{A}[u]$ for all program points $u \quad:-$

Assume π : start $\rightarrow^{*} u$ is the path taken by a computation.
If $e \in \mathcal{A}[u]$, then also $e \in \llbracket \pi \rrbracket \sharp \emptyset$.

Therefore, π can be decomposed into:

with the following properties:

- The expression e is evaluated at the edge k;
- The expression e is not removed from the set of available expressions at any edge in π_{2}, i.e., no variable of e receives a new value :-)
- The expression e is evaluated at the edge k;
- The expression e is not removed from the set of available expressions at any edge in π_{2}, i.e., no variable of e receives a new value :-)
\qquad

The register T_{e} contains the value of e whenever u is reached :-))

Warning:

Transformation 1.1 is only meaningful for assignments $x=e$; where:
$\rightarrow \quad x \notin \operatorname{Vars}(e) ;$
$\rightarrow \quad e \notin$ Vars;
$\rightarrow \quad$ the evaluation of e is non-trivial :-\}

Warning:

Transformation 1.1 is only meaningful for assignments $x=e$; where:

```
\(\rightarrow \quad x \notin \operatorname{Vars}(e)\);
\(\rightarrow \quad e \notin\) Vars;
\(\rightarrow \quad\) the evaluation of \(e\) is non-trivial \(:-\}\)
```

Which leaves us with the following question ...

Question:

How do we compute $\mathcal{A}[u]$ for every program point u??

Question:

How can we compute $\mathcal{A}[u]$ for every program point u ??

We collect all restrictions to the values of $\mathcal{A}[u]$ into a system of constraints:

$$
\begin{array}{llll}
\mathcal{A}[s t a r t] & \subseteq \emptyset & \\
\mathcal{A}[v] & \subseteq \llbracket k \rrbracket^{\sharp}(\mathcal{A}[u]) & k=(u,, v) & \text { edge }
\end{array}
$$

Wanted:

- a maximally large solution
- an algorithm which computes this :-)

Example:

Wanted:

- a maximally large solution
- an algorithm which computes this :-)

Example:

$\mathcal{A}[0] \subseteq \emptyset$

Wanted:

- a maximally large solution
- an algorithm which computes this :-)

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4]
\end{aligned}
$$

Wanted:

- a maximally large solution
- an algorithm which computes this :-)

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup\{x>1\}
\end{aligned}
$$

Wanted:

- a maximally large solution
- an algorithm which computes this :-)

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup\{x>1\} \\
\mathcal{A}[3] & \subseteq(\mathcal{A}[2] \cup\{x * y\}) \backslash \text { Expr }_{y}
\end{aligned}
$$

Wanted:

- a maximally large solution
- an algorithm which computes this :-)

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup\{x>1\} \\
\mathcal{A}[3] & \subseteq(\mathcal{A}[2] \cup\{x * y\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[4] & \subseteq(\mathcal{A}[3] \cup\{x-1\}) \backslash \text { Expr }_{x}
\end{aligned}
$$

Wanted:

- a maximally large solution
- an algorithm which computes this :-)

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup\{x>1\} \\
\mathcal{A}[3] & \subseteq(\mathcal{A}[2] \cup\{x * y\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[4] & \subseteq(\mathcal{A}[3] \cup\{x-1\}) \backslash \operatorname{Expr}_{x} \\
\mathcal{A}[5] & \subseteq \mathcal{A}[1] \cup\{x>1\}
\end{aligned}
$$

Wanted:

- a maximally large solution
- an algorithm which computes this :-)

Example:

Solution:

$$
\begin{aligned}
\mathcal{A}[0] & =\emptyset \\
\mathcal{A}[1] & =\{1\} \\
\mathcal{A}[2] & =\{1, x>1\} \\
\mathcal{A}[3] & =\{1, x>1\} \\
\mathcal{A}[4] & =\{1\} \\
\mathcal{A}[5] & =\{1, x>1\}
\end{aligned}
$$

Observation:

- The possible values for $\mathcal{A}[u]$ form a complete lattice:

$$
\mathbb{D}=2^{E x p r} \quad \text { with } \quad B_{1} \sqsubseteq B_{2} \quad \text { iff } \quad B_{1} \supseteq B_{2}
$$

Observation:

- The possible values for $\mathcal{A}[u]$ form a complete lattice:

$$
\mathbb{D}=2^{E x p r} \quad \text { with } \quad B_{1} \sqsubseteq B_{2} \quad \text { iff } \quad B_{1} \supseteq B_{2}
$$

- The functions $\llbracket k \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ are monotonic, i.e.,

$$
\llbracket k \rrbracket^{\sharp}\left(B_{1}\right) \sqsubseteq \llbracket k \rrbracket^{\sharp}\left(B_{2}\right) \quad \text { iff } \quad B_{1} \sqsubseteq B_{2}
$$

Background 2: complete Lattices

A set \mathbb{D} together with a relation $\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$ is a partial order if for all $a, b, c \in \mathbb{D}$,

$$
\begin{array}{ll}
a \sqsubseteq a & \text { reflexivity } \\
a \sqsubseteq b \wedge b \sqsubseteq a \Longrightarrow a=b & \text { anti-symmetry } \\
a \sqsubseteq b \wedge b \sqsubseteq c \Longrightarrow a \sqsubseteq c & \text { transitivity }
\end{array}
$$

Examples:

1. $\mathbb{D}=2^{\{a, b, c\}}$ with the relation " \subseteq ":

2. \mathbb{Z} with the relation " $=$ ":

3. \mathbb{Z} with the relation " \leq ":
4. $\mathbb{Z}_{\perp}=\mathbb{Z} \cup\{\perp\}$ with the ordering:

$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$
x \sqsubseteq d \quad \text { for all } x \in X
$$

$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$
x \sqsubseteq d \quad \text { for all } x \in X
$$

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \sqsubseteq y$ for every upper bound y of X.
$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$
x \sqsubseteq d \quad \text { for all } x \in X
$$

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \sqsubseteq y$ for every upper bound y of X.

Warning:

- $\quad\{0,2,4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\quad\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6, \ldots$

