
Presburger Formulas over N:

φ ::= x + y = z | x = n |

φ1 ∧φ2 | ¬φ |

∃ x : φ

Goal: Satisfiability

Find values for the free variables in N such that φ holds ...

724

Presburger Formulas over N:

φ ::= x + y = z | x = n |

φ1 ∧φ2 | ¬φ |

∃ x : φ

Goal: PSAT

Find values for the free variables in N such that φ holds ...

725

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

726

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

727

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

728

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

729

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

730

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

731

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

732

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

733

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

734

Idea: Code the values of the variables as Words :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

735

Observation:

The set of satisfying variable assignments is regular :-))

736

Observation:

The set of satisfying variable assignments is regular :-))

φ1 ∧φ2 ==⇒ L(φ1) ∩ L(φ2) (Intersection)

¬φ ==⇒ L(φ) (Complement)

∃ x : φ ==⇒ πx(L(φ)) (Projection)

737

Projecting away the x-component:

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

738

Projecting away the x-component:

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

739

Warning:

• Our representation of numbers is not unique: 011101 should

be accepted iff every word from 011101 · 0∗ is accepted!

• This property is preserved by union, intersection and

complement :-)

• It is lost by projection !!!

==⇒ The automaton for projection must be enriched such that

the property is re-established !!

740

Automata for Basic Predicates:

0 1 2 3

x = 5

0
1 10

741

Automata for Basic Predicates:

0 100 11

x+x = y

10

01

742

Automata for Basic Predicates:

0 1
111
010
100

000
011
101

110

001

x+y = z

743

Results:

Ferrante, Rackoff,1973 : PSAT ≤ DSPACE(22
c·n

)

Fischer, Rabin,1974 : PSAT ≥ NTIME(22
c·n

)

744

Results:

Ferrante, Rackoff,1973 : PSAT ≤ DSPACE(22
c·n

)

Fischer, Rabin,1974 : PSAT ≥ NTIME(22
c·n

)

745

3.3 Improving the Memory Layout

Goal:

• Better utilization of caches

==⇒ reduction of the number of cache misses

• Reduction of allocation/de-allocation costs

==⇒ replacing heap allocation by stack allocation

==⇒ support to free superfluous heap objects

• Reduction of access costs

==⇒ short-circuiting indirection chains (Unboxing)

746

1. Cache Optimization:

Idea: local memory access

• Loading from memory fetches not just one byte but fills a

complete cache line.

• Access to neighbored cells become cheaper.

• If all data of an inner loop fits into the cache, the iteration

becomes maximally memory-efficient ...

747

Possible Solutions:

→ Reorganize the data accesses !

→ Reorganize the data !

Such optimizations can be made fully automatic only for arrays

:-(

Example:

for (j = 1; j < n; j++)

for (i = 1; i < m; i++)

a[i][j] = a[i− 1][j− 1] + a[i][j];

748

==⇒ At first, always iterate over the rows!

==⇒ Exchange the ordering of the iterations:

for (i = 1; i < m; i++)

for (j = 1; j < n; j++)

a[i][j] = a[i− 1][j− 1] + a[i][j];

When is this permitted???

749

Iteration Scheme: before:

750

Iteration Scheme: after:

751

Iteration Scheme: allowed dependencies:

752

In our case, we must check that the following equation systems

have no solution:

Write Read

(i1, j1) = (i2 − 1, j2 − 1)

i1 ≤ i2

j2 ≤ j1

(i1, j1) = (i2 − 1, j2 − 1)

i2 ≤ i1

j1 ≤ j2

The first implies: j2 ≤ j2 − 1 Hurra!

The second implies: i2 ≤ i2 − 1 Hurra!

753

Example: Matrix-Matrix Multiplication

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

for (k = 0; k < K; k++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

Over b[][] the iteration is columnwise :-(

754

1 2 3 4

1

2

3

4

30

755

Exchange the two inner loops:

for (i = 0; i < N; i++)

for (k = 0; k < K; k++)

for (j = 0; j < M; j++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

Is this permitted ???

756

1 32 4

1 2 3 4 1 4 9 16

757

Discussion:

• Correctness follows as before :-)

• A similar idea can also be used for the implementation of

multiplication for row compressed matrices :-))

• Sometimes, the program must be massaged such that the

transformation becomes applicable :-(

• Matrix-matrix multiplication perhaps requires initialization of

the result matrix first ...

758

for (i = 0; i < N; i++)

for (j = 0; j < M; j++) {

c[i][j] = 0;

for (k = 0; k < K; k++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

}

• Now, the two iterations can no longer be exchanged :-(

• The iteration over j, however, can be duplicated ...

759

for (i = 0; i < N; i++) {

for (j = 0; j < M; j++) c[i][j] = 0;

for (j = 0; j < M; j++)

for (k = 0; k < K; k++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

}

Correctness:

==⇒ The read entries (here: no) may not be modified in the

remaining body of the loop !!!

==⇒ The ordering of the write accesses to a memory cell may

not be changed :-)

760

We obtain:

for (i = 0; i < N; i++) {

for (j = 0; j < M; j++) c[i][j] = 0;

for (k = 0; k < K; k++)

for (j = 0; j < M; j++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

}

Discussion:

• Instead of fusing several loops, we now have distributed the

loops :-)

• Accordingly, conditionals may be moved out of the loop

==⇒ if-distribution ...

761

Warning:

Instead of using this transformation, the inner loop could also be

optimized as follows:

for (i = 0; i < N; i++)

for (j = 0; j < M; j++) {

t = 0;

for (k = 0; k < K; k++)

t = t + a[i][k] · b[k][j];

c[i][j] = t;

}

762

Idea:

If we find heavily used array elements a[e1] . . . [er] whose index

expressions stay constant within the inner loop, we could instead

also provide auxiliary registers :-)

Warning:

The latter optimization prohibits the former and vice versa ...

763

Discussion:

• so far, the optimizations are concerned with iterations over

arrays.

• Cache-aware organization of other data-structures is possible,

but in general not fully automatic ...

Example: Stacks

1 2 3 4

l

764

Advantage:

+ The implementation is simple :-)

+ The operations push / pop require constant time :-)

+ The data-structure may grow arbitrarily :-)

Disadvantage:

− The individual list objects may be arbitrarily dispersed over

the memory :-(

765

Alternative:

a

sp

1 2 3 4

s

Advantage:

+ The implementation is also simple :-)

+ The operations push / pop still require constant time :-)

+ The data are consequtively allocated; stack oscillations are

typically small

==⇒ better Cache behavior !!!

766

Disadvantage:

− The data-structure is bounded :-(

Improvement:

• If the array is full, replace it with another of double size !!!

• If the array drops empty to a quarter, halve the array again !!!

==⇒ The extra amortized costs are constant :-)

==⇒ The implementation is no longer so trivial :-}

767

Discussion:

→ The same idea also works for queues :-)

→ Other data-structures are attempted to organize blockwise.

Problem: how can accesses be organized such that they

refer mostly to the same block ???

==⇒ Algorithms for external data

768

2. Stack Allocation instead of Heap Allocation

Problem:

• Programming languages such as Java allocate all

data-structures in the heap — even if they are only used

within the current method :-(

• If no reference to these data survives the call, we want to

allocate these on the stack :-)

==⇒ Escape Analysis

769

Idea:

Determine points-to information.

Determine if a created object is possibly reachable from the out

side ...

Example: Our Pointer Language

x = new();

y = new();

x[A] = y;

z = y;

ret = z;

... could be a possible method body ;-)

770

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such as ret; or

• are reachable from global variables.

... in the Example:

x = new();

y = new();

x[A] = y;

z = y;

ret = z ;

771

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such as ret; or

• are reachable from global variables.

... in the Example:

x = new();

y = new();

x[A] = y;

z = y ;

ret = z ;

772

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such as ret; or

• are reachable from global variables.

... in the Example:

x = new();

y = new();

x[A] = y;

z = y ;

ret = z ;

773

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such as ret; or

• are reachable from global variables.

... in the Example:

x = new();

y = new() ;

x[A] = y;

z = y ;

ret = z ;

774

We conclude:

• The objects which have been allocated by the first new()

may never escape.

• They can be allocated on the stack :-)

Warning:

This is only meaningful if only few such objects are allocated

during a method call :-(

If a local new() occurs within a loop, we still may allocate the

objects in the heap ;-)

775

Extension: Procedures

• We require an interprocedural points-to analysis :-)

• We know the whole program, we can, e.g., merge the

control-flow graphs of all procedures into one and compute

the points-to information for this.

• Warning: If we always use the same global variables

y1, y2, . . . for (the simulation of) parameter passing, the

computed information is necessarily imprecise :-(

• If the whole program is not known, we must assume that

each reference which is known to a procedure escapes :-((

776

3.4 Wrap-Up

We have considered various optimizations for improving

hardware utilization.

Arrangement of the Optimizations:

• First, global restructuring of procedures/functions and of

loops for better memory behavior ;-)

• Then local restructuring for better utilization of the

instruction set and the processor parallelism :-)

• Then register allocation and finally,

• Peephole optimization for the final kick ...

777

Procedures: Tail Recursion + Inlining

Stack Allocation

Loops: Iteration Reordering

→ if-Distribution

→ for-Distribution

Value Caching

Bodies: Life-Range Splitting (SSA)

Instruction Selection

Instruction Scheduling with

→ Loop Unrolling

→ Loop Fusion

Instructions: Register Allocation

Peephole Optimization

778

