Presburger Formulas over \mathbb{N} :

$$\phi \quad ::= \quad x + y = z \quad | \quad x = n \quad |$$
$$\phi_1 \land \phi_2 \quad | \quad \neg \phi \quad |$$
$$\exists x : \phi$$

Presburger Formulas over \mathbb{N} :

$$\phi \quad ::= \quad x + y = z \quad | \quad x = n \quad |$$
$$\phi_1 \land \phi_2 \quad | \quad \neg \phi \quad |$$
$$\exists x : \phi$$

Goal: PSAT

Find values for the free variables in \mathbb{N} such that ϕ holds ...

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Z	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	Х	1	0	0	0	1	0	0	0

Observation:

The set of satisfying variable assignments is regular :-))

Observation:

The set of satisfying variable assignments is regular :-))

$$\begin{aligned} \phi_1 \wedge \phi_2 & \implies & \mathcal{L}(\phi_1) \cap \mathcal{L}(\phi_2) & \text{(Intersection)} \\ \neg \phi & \implies & \overline{\mathcal{L}(\phi)} & \text{(Complement)} \\ \exists x : \phi & \implies & \pi_x(\mathcal{L}(\phi)) & \text{(Projection)} \end{aligned}$$

Projecting away the *x*-component:

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

Projecting away the *x*-component:

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0

Warning:

- Our representation of numbers is not unique: 011101 should be accepted iff every word from 011101 · 0* is accepted!
- This property is preserved by union, intersection and complement :-)
- It is lost by projection !!!
- → The automaton for projection must be enriched such that the property is re-established !!

Automata for Basic Predicates:

$$x = 5$$

$$0 \xrightarrow{1} 0 \xrightarrow{1} 0 \xrightarrow{2} 3 \xrightarrow{0} 0$$

Automata for Basic Predicates:

Automata for Basic Predicates:

x+y = z

Results:

Ferrante, Rackoff, 1973 :

 $PSAT \leq DSPACE(2^{2^{c \cdot n}})$

Results:

 $PSAT \leq DSPACE(2^{2^{c \cdot n}})$ Ferrante, Rackoff, 1973 :

Fischer, Rabin, 1974 :

 $PSAT \geq NTIME(2^{2^{c \cdot n}})$

3.3 Improving the Memory Layout

Goal:

- Better utilization of caches
 - \Rightarrow reduction of the number of cache misses
- Reduction of allocation/de-allocation costs
 - \implies replacing heap allocation by stack allocation
 - \implies support to free superfluous heap objects
- Reduction of access costs
 - \Rightarrow short-circuiting indirection chains (Unboxing)

1. Cache Optimization:

Idea: local memory access

- Loading from memory fetches not just one byte but fills a complete cache line.
- Access to neighbored cells become cheaper.
- If all data of an inner loop fits into the cache, the iteration becomes maximally memory-efficient ...

Possible Solutions:

- \rightarrow Reorganize the data accesses !
- \rightarrow Reorganize the data !

Such optimizations can be made fully automatic only for arrays :-(

Example:

for
$$(j = 1; j < n; j++)$$

for $(i = 1; i < m; i++)$
 $a[i][j] = a[i-1][j-1] + a[i][j];$

- \implies At first, always iterate over the rows!
- \implies Exchange the ordering of the iterations:

for
$$(i = 1; i < m; i++)$$

for $(j = 1; j < n; j++)$
 $a[i][j] = a[i-1][j-1] + a[i][j];$

When is this permitted???

Iteration Scheme: before:

Iteration Scheme: after:

Iteration Scheme: allowed dependencies:

In our case, we must check that the following equation systems have **no** solution:

Write		Read
(i_1, j_1)	=	$(i_2 - 1, j_2 - 1)$
i_1	\leq	i_2
<i>j</i> ₂	\leq	j_1
(i_1, j_1)	=	$(i_2 - 1, j_2 - 1)$
<i>i</i> ₂	\leq	i_1
j_1	\leq	<i>j</i> 2

The first implies: $j_2 \leq j_2 - 1$ Hurra!The second implies: $i_2 \leq i_2 - 1$ Hurra!

Example: Matrix-Matrix Multiplication

for
$$(i = 0; i < N; i++)$$

for $(j = 0; j < M; j++)$
for $(k = 0; k < K; k++)$
 $c[i][j] = c[i][j] + a[i][k] \cdot b[k][j];$

Over *b*[][] the iteration is columnwise :-(

Exchange the two inner loops:

for
$$(i = 0; i < N; i++)$$

for $(k = 0; k < K; k++)$
for $(j = 0; j < M; j++)$
 $c[i][j] = c[i][j] + a[i][k] \cdot b[k][j];$

Is this permitted ???

				1	2	3	4
1	2	3	4	1	4	9	16
1	2	3	4	1	4	9	16

Discussion:

- Correctness follows as before :-)
- A similar idea can also be used for the implementation of multiplication for row compressed matrices :-))
- Sometimes, the program must be massaged such that the transformation becomes applicable :-(
- Matrix-matrix multiplication perhaps requires initialization of the result matrix first ...

for
$$(i = 0; i < N; i++)$$

for $(j = 0; j < M; j++)$ {
 $c[i][j] = 0;$
for $(k = 0; k < K; k++)$
 $c[i][j] = c[i][j] + a[i][k] \cdot b[k][j];$
}

- Now, the two iterations can no longer be exchanged :-(
- The iteration over *j*, however, can be duplicated ...

for
$$(i = 0; i < N; i++)$$
 {
for $(j = 0; j < M; j++)$ $c[i][j] = 0;$
for $(j = 0; j < M; j++)$
for $(k = 0; k < K; k++)$
 $c[i][j] = c[i][j] + a[i][k] \cdot b[k][j];$
}

Correctness:

- → The read entries (here: no) may not be modified in the remaining body of the loop !!!
- → The ordering of the write accesses to a memory cell may not be changed :-)

We obtain:

for
$$(i = 0; i < N; i++)$$
 {
for $(j = 0; j < M; j++)$ $c[i][j] = 0;$
for $(k = 0; k < K; k++)$
for $(j = 0; j < M; j++)$
 $c[i][j] = c[i][j] + a[i][k] \cdot b[k][j];$
}

Discussion:

- Instead of fusing several loops, we now have distributed the loops :-)
- Accordingly, conditionals may be moved out of the loop
 if-distribution ...

Warning:

Instead of using this transformation, the inner loop could also be optimized as follows:

for
$$(i = 0; i < N; i++)$$

for $(j = 0; j < M; j++)$ {
 $t = 0;$
for $(k = 0; k < K; k++)$
 $t = t + a[i][k] \cdot b[k][j];$
 $c[i][j] = t;$
}

Idea:

If we find heavily used array elements $a[e_1] \dots [e_r]$ whose index expressions stay constant within the inner loop, we could instead also provide auxiliary registers :-)

Warning:

The latter optimization prohibits the former and vice versa ...

Discussion:

- so far, the optimizations are concerned with iterations over arrays.
- Cache-aware organization of other data-structures is possible, but in general not fully automatic ...
- Example:

Stacks

Advantage:

- + The implementation is simple :-)
- + The operations push / pop require constant time :-)
- + The data-structure may grow arbitrarily :-)

Disadvantage:

 The individual list objects may be arbitrarily dispersed over the memory :-(

Alternative:

Advantage:

- + The implementation is also simple :-)
- + The operations push / pop still require constant time :-)
- + The data are consequtively allocated; stack oscillations are typically small

better Cache behavior !!!

Disadvantage:

– The data-structure is **bounded** :-(

Improvement:

- If the array is **full**, replace it with another of **double** size !!!
- If the array drops empty to a quarter, halve the array again !!!
- \implies The extra amortized costs are constant :-)
- \longrightarrow The implementation is no longer so trivial :-}

Discussion:

- \rightarrow The same idea also works for queues :-)
- → Other data-structures are attempted to organize blockwise.
 Problem: how can accesses be organized such that they refer mostly to the same block ???

 \implies Algorithms for external data

2. Stack Allocation instead of Heap Allocation

Problem:

- Programming languages such as Java allocate all data-structures in the heap — even if they are only used within the current method :-(
- If no reference to these data survives the call, we want to allocate these on the stack :-)

Idea:

Determine points-to information.

Determine if a created object is possibly reachable from the out side ...

Example: Our Pointer Language

$$x = \text{new}();$$

 $y = \text{new}();$
 $x[A] = y;$
 $z = y;$
 $\text{ret} = z;$

... could be a possible method body ;-)

- are assigned to a global variable such as ret; or
- are reachable from global variables.

$$x = \text{new}();$$

 $y = \text{new}();$
 $x[A] = y;$
 $z = y;$
 $\text{ret} = z;$

- are assigned to a global variable such as ret; or
- are reachable from global variables.

$$x = \text{new}();$$

$$y = \text{new}();$$

$$x[A] = y;$$

$$z = y;$$

$$ret = z;$$

- are assigned to a global variable such as ret; or
- are reachable from global variables.

$$x = \text{new}();$$

$$y = \text{new}();$$

$$x[A] = y;$$

$$z = y;$$

$$ret = z;$$

- are assigned to a global variable such as ret; or
- are reachable from global variables.

$$x = \text{new}();$$

$$y = \text{new}();$$

$$x[A] = y;$$

$$z = y;$$

$$ret = z;$$

We conclude:

- The objects which have been allocated by the first new() may never escape.
- They can be allocated on the stack :-)

Warning:

This is only meaningful if only few such objects are allocated during a method call :-(

If a local new() occurs within a loop, we still may allocate the objects in the heap ;-)

Extension: Procedures

- We require an interprocedural points-to analysis :-)
- We know the whole program, we can, e.g., merge the control-flow graphs of all procedures into one and compute the points-to information for this.
- Warning: If we always use the same global variables y_1, y_2, \ldots for (the simulation of) parameter passing, the computed information is necessarily imprecise :-(
- If the whole program is **not** known, we must assume that each reference which is known to a procedure escapes :-((

3.4 Wrap-Up

We have considered various optimizations for improving hardware utilization.

Arrangement of the Optimizations:

- First, global restructuring of procedures/functions and of loops for better memory behavior ;-)
- Then local restructuring for better utilization of the instruction set and the processor parallelism :-)
- Then register allocation and finally,
- Peephole optimization for the final kick ...

Procedures:	Tail Recursion + Inlining		
	Stack Allocation		
Loops:	Iteration Reordering		
	\rightarrow if-Distribution		
	\rightarrow for-Distribution		
	Value Caching		
Bodies:	Life-Range Splitting (SSA)		
	Instruction Selection		
	Instruction Scheduling with		
	\rightarrow Loop Unrolling		
	\rightarrow Loop Fusion		
Instructions:	Register Allocation		
	Peephole Optimization		