44 Application: Inlining

Problem:

e global variables. The program:

let x=1
f=let x=2
in funy — y+x

in fx

805

... computes something else than:

let x=1
f= let x=2
in funy — y+x
in | let y=x
in y+x

recursive functions. In the definition:

foo = funy — fooy

foo should better not be substituted :-)

806

Idea 1:

l

First, we introduce unique variable names.

l

Then, we only substitute functions which are staticly within
the scope of the same global variables as the application :-)

— For every expression, we determine all function definitions
with this property :-)

807

Let D = Dle] denote the set of definitions which staticly arrive
at e.

ee If ¢ = letx;=e;and...andx; = ¢, iney; then:
D[el] = D
Dler] = DU{xy,...,x1}
Dleg)] = DUA{xy, ..., x}

ee Inall othercases, D ispropagated to the sub-expressions
unchanged :-)

Eg,if e = funx — ¢ then:

Dle;) = D

808

.. in the Example:

let x=1
f= let x; =2
in funy — y+x

in fx

... the application f x isnot in the scope of x;

—— we first duplicate the definition of x; :

809

let x=1
X1 =2
f=let x; =2
in funy — y+x

in fx

the inner definition becomes redundant !!!

810

let x=1
X1:2
f=ftuny — y+x

in fx

—— now we can apply inlining :

811

let x=1
X1:2

f=funy — y+ x4

in | let y=x

in y-+x

Removing variable-variable-assignments, we arrive at:

812

let x=1
X1:2

f=funy — y+ x4

in |[x-+x;

813

Idea 2:

— We apply our value analysis.
— We ignore global variables :-)

— We only substitute functions without free variables :-))

Example: The map-Function

letrec f =funx — x-x
map = fun ¢ — fun x — match x
with [| — []
| ::z — match z with (xq, xp)
in x1::mapgx;

in map f list

814

The actual parameter f in the application map f is
always funx — x-x)

Therefore, map f can be specialized to a new function h

defined by:

h = letg=|funx — x-x

in fun x — match x
with [|] — []

| ::z — match z with (xq, xp)

— g X1 map g | X2

815

The inner occurrence of map ¢ can be replaced with h

—— fold-Transformation :-)

h = letg=funx — x-x
in fun x — match x
with [|] — []
| @z — match z with (xq, x,)

— g x1:th xp

816

Inlining the function ¢ yields:

h = letg=funx — x-x
in fun x — match x
with [] — []
| @z — match z with (xq, x,)
— (letx =x;

in xxx) hx

817

Removing useless definitions and variable-variable assignments

yields:

h = funx — matchx
with H — H
| @z — match z with (x1, x,)

— X1 ¥ Xq ZZth

818

4.5

Deforestation

Functional programmers love to collect intermediate results
in lists which are processed by higher-order functions.

Examples of such higher-order functions are:

map = funf — fun!/ — match/with || — []
| ::z — (match z with (x,xs) —

f x::map f xs)

819

filter = funp — fun!/ — match [with || — []
| :z — (match z with (x,xs) —
if p x then x :: filter p xs

else filter p xs)

foldl

fun f — funa — fun!/ — match/with || — a4
| :z — (match z with (x,xs) —

foldl f (fax) xs)

820

id — funx — x

comp = funf — fung — funx — f (gx)

comp; = funf — fung — funx; — funx, —
f(gx1) x

comp, = funf — fung — funx; — funx, —

fx1 (g x2)

821

Example:

sum = foldl (+) 0
length = let f = map (funx — 1)
in comp sum f

dev — fun! — let s — sum |/
n = length [
mean = si/n
I = map (fun x — x — mean) |
I = map (funx — x-x) L
S — sum

822

Observations:

e Explicit recursion does no longer occur!

e The implementation creates unnecessary intermediate
data-structures!

length could also be implemented as:

length = let f = funa — funx — a+1
in foldl f O

e This implementation avoids to create intermediate lists !!!

823

Simplification Rules:

compid f = compfid = f
comp, f id = comp, fid = f
map id = id

comp (map f) (mapg) = map (comp f g)

comp (foldl f a) (map g) = foldl (comp, f g)a

824

Simplification Rules:

compid f = compfid = f
comp;, f id = comp, fid = f
map id = id
comp (map f) (map g) = map (comp f g)
comp (foldl f a) (map g) = foldl (comp, fg)a
comp (filter py) (filter p,) = filter (funx — if p, x then p; x
else false)
comp (foldl f a) (filter p) = leth =funa — fun x — if px then fax

else a
in foldl h a

825

Warning:

Function compositions also could occur as nested function calls ...

id x = X

map id [= |

map f (map g) = map (comp f g) I

foldl f a (map gl) = foldl(comp, fg)al

filter p1 (filter po 1) = filter (funx — p1x A prx) |

foldl f a (filter pI) = leth =funa — fun x — if px then fax
else a

in foldlhal

826

Example, optimized:

sum = foldl (+) 0
length = let f = comp, (+) (funx — 1)
in foldl f 0

dev — fun! — let s — sum |/
n = length [
mean = $1/n
f = comp (funx — x-x)

(fun x — x — mean)

¢ = comp(4)f
52 = foldl g0

827

Remarks:

e All intermediate lists have disappeared :-)
e Only foldl remain —i.e., loops :-))

o Compositions of functions can be further simplified in the
next step by Inlining.

e Inside dev, we then obtain:

g = funa — funx — let xy = x—mean
X2 — X1-°Xq
in a-+ x,

e The result is a sequence of let-definitions !!!

828

Extension: Tabulation

If the list has been created by tabulation of a function, the creation
of the list sometimes can be avoided ...

tabulate’

funj — funf — funn —

if j > n then []

else (fj) :: tabulate’ (j4+1) f n
tabulate = tabulate’ 0

829

Then we have:

comp (map f) (tabulate g) = tabulate (comp f g)

comp (foldl f a) (tabulate ¢) = loop (comp, f) a
where:

loop = funj — funf — funa — funn —

if j > nthena
else loop’ (j+1) f(faj))n

loop = loop’ 0

830

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev’ — funaga — funl —

match [with [| — a
| iz — (match z with (x,xs) —

rev' (x::a) xs)

rev = rev []
comp rev rev = id
swap = funf — funx — funy — fyx

comp swap swap = id

831

foldr fa = comp (foldl (swap f) a) rev

Discussion:

e The standard implementation of foldr is not tail-recursive.

e The last equation decomposes a foldr into two tail-recursive
functions — at the price that an intermediate list is created.

o Therefore, the standard implementation is probably faster
)

e Sometimes, the operation rev can also be optimized away ...

832

We have:

comp rev (map f) = comp (map f) rev
comp rev (filter p) = comp (filter p) rev
comp rev (tabulate f) = rev_tabulate f

Here, rev_tabulate tabulates in reverse ordering. This function has
properties quite analogous to tabulate:

comp (map f) (rev_tabulate g) = rev_tabulate (comp, f g)
comp (foldl f a) (rev_tabulate g) = rev_loop (comp, f g) a

833

Extension (3): Dependencies on the Index

e Correctness is proven by induction on the lengthes of
occurring lists.

e Similar composition results also hold for transformations
which take the current indices into account:
mapi/’ = funi — funf — fun!/ — match! with || — |[]
| 1z — (match z with (x,xs) —

(fix):map’ (i+1) f xs)

mapi = mapi’ 0

834

Analogously, there is index-dependent accumulation:

foldli’ = funi — funf — funa — funl —
match [with [| — a
| ::z — (match z with (x,xs) —
foldli" (i+1) f (fiax) xs)
foldli = foldli’ 0

For composition, we must take care that always the same indices
are used. This is achieved by:

835

compi = funf — fung — funi — funx — fi(gix)

compi; = funf — fung — funi — funx; — funx, —

fi(gixg)x

compi, = funf — fung — funi — funx; — funx, —

fixi(gixm)

cmp; = funf — fung — funi — funx; — funx, —
fixi(gx2)
cmp, = funf — fung — funi — funx; — funx, —

fx(gixa)

836

Then:

comp (mapi f) (map g) = mapi (comp, f g)

comp (map f) (mapi g) = mapi (comp f Q)

comp (mapi f) (mapi) = mapi (compi f g)

comp (foldli f a) (map g) = foldli (cmp, f g)a

comp (foldl f a) (mapi g) = foldli (cmp, f g)a

comp (foldli f a) (mapi g) = foldli (compi, f g) a

comp (foldli f a) (tabulateg) = leth= funa — funi —
fia(gi)

in loop ha

837

Discussion:

e Warning: index-dependent transformations may not
commute with rev or filter.

e All our rules can only be applied if the functions id, map, mapi,
foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ... are
provided by a standard library: Only then the algebraic
properties can be guaranteed !!!

e Similar simplification rules can be derived for any kind of
tree-like data-structure tree & .

e These also provide operations map, mapi and fold|, foldli with
corresponding rules.

e Further opportunities are opened up by functions to_list and
from_list ...

838

