
4.4 Application: Inlining

Problem:

• global variables. The program:

let x = 1

f = let x = 2

in fun y → y + x

in f x

805

• ... computes something else than:

let x = 1

f = let x = 2

in fun y → y + x

in let y = x

in y + x

• recursive functions. In the definition:

foo = fun y → foo y

foo should better not be substituted :-)

806

Idea 1:

→ First, we introduce unique variable names.

→ Then, we only substitute functions which are staticly within

the scope of the same global variables as the application :-)

→ For every expression, we determine all function definitions

with this property :-)

807

Let D = D[e] denote the set of definitions which staticly arrive

at e.

•• If e ≡ let x1 = e1 and . . . and xk = ek in e0 then:

D[e1] = D

. . .

D[ek] = D ∪ {x1, . . . , xk−1}

D[e0] = D ∪ {x1, . . . , xk}

•• In all other cases, D is propagated to the sub-expressions

unchanged :-)

E.g., if e ≡ fun x → e1 then:

D[e1] = D

808

... in the Example:

let x = 1

f = let x1 = 2

in fun y → y + x1

in f x

... the application f x is not in the scope of x1

==⇒ we first duplicate the definition of x1 :

809

... in the Example:

let x = 1

x1 = 2

f = let x1 = 2

in fun y → y + x1

in f x

==⇒ the inner definition becomes redundant !!!

810

... in the Example:

let x = 1

x1 = 2

f = fun y → y + x1

in f x

==⇒ now we can apply inlining :

811

... in the Example:

let x = 1

x1 = 2

f = fun y → y + x1

in let y = x

in y + x1

Removing variable-variable-assignments, we arrive at:

812

... in the Example:

let x = 1

x1 = 2

f = fun y → y + x1

in x + x1

813

Idea 2:

→ We apply our value analysis.

→ We ignore global variables :-)

→ We only substitute functions without free variables :-))

Example: The map-Function

let rec f = fun x → x · x

map = fun g → fun x → match x

with [] → []

| :: z → match z with (x1, x2)

in x1 ::map g x2

in map f list

814

• The actual parameter f in the application map f is

always fun x → x · x :-)

• Therefore, map f can be specialized to a new function h

defined by:

h = let g = fun x → x · x

in fun x → match x

with [] → []

| :: z → match z with (x1, x2)

→ g x1:: map g x2

815

The inner occurrence of map g can be replaced with h

==⇒ fold-Transformation :-)

h = let g = fun x → x · x

in fun x → match x

with [] → []

| :: z → match z with (x1, x2)

→ g x1:: h x2

816

Inlining the function g yields:

h = let g = fun x → x · x

in fun x → match x

with [] → []

| :: z → match z with (x1, x2)

→ (let x = x1

in x ∗ x) :: h x2

817

Removing useless definitions and variable-variable assignments

yields:

h = fun x → match x

with [] → []

| :: z → match z with (x1, x2)

→ x1 ∗ x1 :: h x2

818

4.5 Deforestation

• Functional programmers love to collect intermediate results

in lists which are processed by higher-order functions.

• Examples of such higher-order functions are:

map = fun f → fun l → match l with [] → []

| :: z → (match z with (x, xs) →

f x :: map f xs)

819

filter = fun p → fun l → match l with [] → []

| :: z → (match z with (x, xs) →

if p x then x :: filter p xs

else filter p xs)

foldl = fun f → fun a → fun l → match l with [] → a

| :: z → (match z with (x, xs) →

foldl f (f a x) xs)

820

id = fun x → x

comp = fun f → fun g → fun x → f (g x)

comp1 = fun f → fun g → fun x1 → fun x2 →

f (g x1) x2

comp2 = fun f → fun g → fun x1 → fun x2 →

f x1 (g x2)

821

Example:

sum = foldl (+) 0

length = let f = map (fun x → 1)

in comp sum f

dev = fun l → let s1 = sum l

n = length l

mean = s1/n

l1 = map (fun x → x−mean) l

l2 = map (fun x → x · x) l1

s2 = sum l2

in s2/n

822

Observations:

• Explicit recursion does no longer occur!

• The implementation creates unnecessary intermediate

data-structures!

length could also be implemented as:

length = let f = fun a → fun x → a + 1

in foldl f 0

• This implementation avoids to create intermediate lists !!!

823

Simplification Rules:

comp id f = comp f id = f

comp1 f id = comp2 f id = f

map id = id

comp (map f) (map g) = map (comp f g)

comp (foldl f a) (map g) = foldl (comp2 f g) a

824

Simplification Rules:

comp id f = comp f id = f

comp1 f id = comp2 f id = f

map id = id

comp (map f) (map g) = map (comp f g)

comp (foldl f a) (map g) = foldl (comp2 f g) a

comp (filter p1) (filter p2) = filter (fun x → if p2 x then p1 x

else false)

comp (foldl f a) (filter p) = let h = fun a → fun x → if p x then f a x

else a

in foldl h a

825

Warning:

Function compositions also could occur as nested function calls ...

id x = x

map id l = l

map f (map g l) = map (comp f g) l

foldl f a (map g l) = foldl (comp2 f g) a l

filter p1 (filter p2 l) = filter (fun x → p1 x ∧ p2 x) l

foldl f a (filter p l) = let h = fun a → fun x → if p x then f a x

else a

in foldl h a l

826

Example, optimized:

sum = foldl (+) 0

length = let f = comp2 (+) (fun x → 1)

in foldl f 0

dev = fun l → let s1 = sum l

n = length l

mean = s1/n

f = comp (fun x → x · x)

(fun x → x−mean)

g = comp2 (+) f

s2 = foldl g 0 l

in s2/n

827

Remarks:

• All intermediate lists have disappeared :-)

• Only foldl remain — i.e., loops :-))

• Compositions of functions can be further simplified in the

next step by Inlining.

• Inside dev, we then obtain:

g = fun a → fun x → let x1 = x−mean

x2 = x1 · x1

in a + x2

• The result is a sequence of let-definitions !!!

828

Extension: Tabulation

If the list has been created by tabulation of a function, the creation

of the list sometimes can be avoided ...

tabulate′ = fun j → fun f → fun n →

if j ≥ n then []

else (f j) :: tabulate′ (j + 1) f n

tabulate = tabulate′ 0

829

Then we have:

comp (map f) (tabulate g) = tabulate (comp f g)

comp (foldl f a) (tabulate g) = loop (comp2 f g) a

where:

loop′ = fun j → fun f → fun a → fun n →

if j ≥ n then a

else loop′ (j + 1) f (f a j)) n

loop = loop′ 0

830

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev′ = fun a → fun l →

match l with [] → a

| :: z → (match z with (x, xs) →

rev′ (x :: a) xs)

rev = rev′ []

comp rev rev = id

swap = fun f → fun x → fun y → f y x

comp swap swap = id

831

foldr f a = comp (foldl (swap f) a) rev

Discussion:

• The standard implementation of foldr is not tail-recursive.

• The last equation decomposes a foldr into two tail-recursive

functions — at the price that an intermediate list is created.

• Therefore, the standard implementation is probably faster

:-)

• Sometimes, the operation rev can also be optimized away ...

832

We have:

comp rev (map f) = comp (map f) rev

comp rev (filter p) = comp (filter p) rev

comp rev (tabulate f) = rev_tabulate f

Here, rev_tabulate tabulates in reverse ordering. This function has

properties quite analogous to tabulate:

comp (map f) (rev_tabulate g) = rev_tabulate (comp2 f g)

comp (foldl f a) (rev_tabulate g) = rev_loop (comp2 f g) a

833

Extension (3): Dependencies on the Index

• Correctness is proven by induction on the lengthes of

occurring lists.

• Similar composition results also hold for transformations

which take the current indices into account:

mapi′ = fun i → fun f → fun l → match l with [] → []

| :: z → (match z with (x, xs) →

(f i x) :: mapi′ (i + 1) f xs)

mapi = mapi′ 0

834

Analogously, there is index-dependent accumulation:

foldli′ = fun i → fun f → fun a → fun l →

match l with [] → a

| :: z → (match z with (x, xs) →

foldli′ (i + 1) f (f i a x) xs)

foldli = foldli′ 0

For composition, we must take care that always the same indices

are used. This is achieved by:

835

compi = fun f → fun g → fun i → fun x → f i (g i x)

compi1 = fun f → fun g → fun i → fun x1 → fun x2 →

f i (g i x1) x2

compi2 = fun f → fun g → fun i → fun x1 → fun x2 →

f i x1 (g i x2)

cmp1 = fun f → fun g → fun i → fun x1 → fun x2 →

f i x1 (g x2)

cmp2 = fun f → fun g → fun i → fun x1 → fun x2 →

f x1 (g i x2)

836

Then:

comp (mapi f) (map g) = mapi (comp2 f g)

comp (map f) (mapi g) = mapi (comp f g)

comp (mapi f) (mapi g) = mapi (compi f g)

comp (foldli f a) (map g) = foldli (cmp1 f g) a

comp (foldl f a) (mapi g) = foldli (cmp2 f g) a

comp (foldli f a) (mapi g) = foldli (compi2 f g) a

comp (foldli f a) (tabulate g) = let h = fun a → fun i →

f i a (g i)

in loop h a

837

Discussion:

• Warning: index-dependent transformations may not

commute with rev or filter.

• All our rules can only be applied if the functions id, map, mapi,

foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ... are

provided by a standard library: Only then the algebraic

properties can be guaranteed !!!

• Similar simplification rules can be derived for any kind of

tree-like data-structure tree α .

• These also provide operations map, mapi and foldl, foldli with

corresponding rules.

• Further opportunities are opened up by functions to_list and

from_list ...

838

