4.4 Application:

Inlining

Problem:

- global variables. The program:
let $x=1$

$$
\begin{aligned}
f= & \text { let } x=2 \\
& \text { in fun } y \rightarrow y+x
\end{aligned}
$$

in $f x$
... computes something else than:

$$
\begin{aligned}
& \text { let } \begin{array}{l}
x=1 \\
\\
f=\text { let } x=2 \\
\text { in fun } y \rightarrow y+x \\
\text { in } \begin{array}{ll}
\text { let } & y=x \\
\text { in } & y+x
\end{array}
\end{array} . \begin{array}{l}
\text { in }
\end{array} \\
&
\end{aligned}
$$

- recursive functions. In the definition:

$$
\text { foo }=\text { fun } y \rightarrow \text { foo } y
$$

foo should better not be substituted :-)

Idea 1 :

$\rightarrow \quad$ First, we introduce unique variable names.
$\rightarrow \quad$ Then, we only substitute functions which are staticly within the scope of the same global variables as the application :-)
$\rightarrow \quad$ For every expression, we determine all function definitions with this property :-)

Let $D=D[e]$ denote the set of definitions which staticly arrive at e.
$\bullet \quad$ If $e \equiv$ let $x_{1}=e_{1}$ and \ldots and $x_{k}=e_{k}$ in $e_{0} \quad$ then:

$$
\begin{aligned}
D\left[e_{1}\right] & =D \\
& \cdots \\
D\left[e_{k}\right] & =D \cup\left\{x_{1}, \ldots, x_{k-1}\right\} \\
D\left[e_{0}\right] & =D \cup\left\{x_{1}, \ldots, x_{k}\right\}
\end{aligned}
$$

- In all other cases, D is propagated to the sub-expressions unchanged :-)
E.g., if $\quad e \equiv$ fun $x \rightarrow e_{1}$ then:

$$
D\left[e_{1}\right]=D
$$

... in the Example:

$$
\begin{array}{rlr}
\text { let } & x=1 \\
& f=\text { let } x_{1}=2 \\
& \text { in fun } y \rightarrow y+x_{1} \\
\text { in } & f x
\end{array}
$$

... the application $f x$ is not in the scope of x_{1}
\Longrightarrow we first duplicate the definition of x_{1} :

$$
\begin{aligned}
\text { let } & x=1 \\
& x_{1}=2 \\
& f=\text { let } x_{1}=2 \\
& \text { in fun } y \rightarrow y+x_{1}
\end{aligned}
$$

\Longrightarrow the inner definition becomes redundant !!!

$$
\begin{array}{ll}
\text { let } & x=1 \\
& x_{1}=2 \\
& f=\text { fun } y \rightarrow y+x_{1} \\
\text { in } & f x
\end{array}
$$

now we can apply inlining :

$$
\begin{array}{ll}
\text { let } & x=1 \\
& x_{1}=2 \\
& f=\text { fun } y \rightarrow y+x_{1} \\
\text { in } \begin{array}{|ll}
\text { let } & y=x \\
\text { in } & y+x_{1}
\end{array}
\end{array}
$$

Removing variable-variable-assignments, we arrive at:

$$
\begin{array}{ll}
\text { let } & x=1 \\
& x_{1}=2 \\
& f=\text { fun } y \rightarrow y+x_{1} \\
\text { in } & x+x_{1}
\end{array}
$$

Idea 2:

$\rightarrow \quad$ We apply our value analysis.
\rightarrow We ignore global variables :-)
$\rightarrow \quad$ We only substitute functions without free variables :-))

Example: The map-Function
let rec $\mathrm{f}=\mathrm{fun} x \rightarrow x \cdot x$

$$
\text { map }=\text { fun } g \rightarrow \text { fun } x \rightarrow \text { match } x
$$

$$
\begin{array}{cl}
\text { with } & {[] \rightarrow[]} \\
\mid & :: z \rightarrow \\
\text { match } z \text { with }\left(x_{1}, x_{2}\right)
\end{array}
$$

in $x_{1}:: \operatorname{map} g x_{2}$
in map f list

- The actual parameter f in the application map f is always fun $x \rightarrow x \cdot x$:-)
- Therefore, map f can be specialized to a new function h defined by:

$$
\left.\begin{array}{rl}
\mathrm{h}= & \text { let } g= \\
\text { in fun } x \rightarrow x \cdot x \\
\text { fun } x \rightarrow \operatorname{match} x
\end{array}\right] \begin{aligned}
\text { with }[] \rightarrow & {[] } \\
\mid \quad:: z \rightarrow & \text { match } z \text { with }\left(x_{1}, x_{2}\right) \\
& \rightarrow g x_{1}:: \operatorname{map} g x_{2}
\end{aligned}
$$

The inner occurrence of map g can be replaced with h
\Longrightarrow fold-Transformation :-)

$$
\begin{aligned}
& \text { h }=\quad \text { let } g=\text { fun } x \rightarrow x \cdot x \\
& \text { in fun } x \rightarrow \operatorname{match} x \\
& \text { with }[] \rightarrow[] \\
& \mid:: z \rightarrow \operatorname{match} z \text { with }\left(x_{1}, x_{2}\right) \\
& \rightarrow g x_{1}:: \text { h } x_{2}
\end{aligned}
$$

Inlining the function g yields:

$$
\begin{aligned}
& \text { h }=\text { let } g=\text { fun } x \rightarrow x \cdot x \\
& \text { in fun } x \rightarrow \operatorname{match} x \\
& \text { with }[] \rightarrow[] \\
& \quad:: z \rightarrow \operatorname{match} z \text { with }\left(x_{1}, x_{2}\right) \\
& \\
& \quad \begin{array}{r}
\text { (let } x=x_{1}
\end{array} \\
& \quad \text { in } x * x):: \text { h } x_{2}
\end{aligned}
$$

Removing useless definitions and variable-variable assignments yields:

$$
\begin{aligned}
\mathrm{h}=\quad \text { fun } x \rightarrow & \text { match } x \\
& \text { with }[] \rightarrow \\
\mid \quad:: z \rightarrow & \text { match } z \text { with }\left(x_{1}, x_{2}\right) \\
& \rightarrow x_{1} * x_{1}:: \text { h } x_{2}
\end{aligned}
$$

4.5 Deforestation

- Functional programmers love to collect intermediate results in lists which are processed by higher-order functions.
- Examples of such higher-order functions are:

$$
\begin{array}{r}
\text { map }=\text { fun } f \rightarrow \text { fun } l \rightarrow \text { match } l \text { with }[] \rightarrow[] \\
\mid:: z \rightarrow(\text { match } z \text { with }(x, x s) \rightarrow \\
f x:: \operatorname{map} f x s)
\end{array}
$$

$$
\begin{aligned}
& \text { filter }=\text { fun } p \rightarrow \text { fun } l \rightarrow \boldsymbol{m a t c h} l \text { with }[] \rightarrow \text { [] } \\
& \mid:: z \rightarrow \text { (match } z \text { with }(x, x s) \rightarrow \\
& \text { if } p x \text { then } x:: \text { filter } p x s \\
& \text { else filter } p x s \text {) } \\
& \text { foldl }=\text { fun } f \rightarrow \text { fun } a \rightarrow \text { fun } l \rightarrow \text { match } l \text { with }[] \rightarrow a \\
& \mid:: z \rightarrow \text { (match } z \text { with }(x, x s) \rightarrow \\
& \text { foldl } f(f a x) x s)
\end{aligned}
$$

$$
\begin{aligned}
& \text { id } \begin{array}{l}
=\text { fun } x \rightarrow x \\
\text { comp }=\text { fun } f \rightarrow \text { fun } g \rightarrow \text { fun } x \rightarrow f(g x) \\
\text { comp }_{1}=\text { fun } f \rightarrow \text { fun } g \rightarrow \text { fun } x_{1} \rightarrow \text { fun } x_{2} \rightarrow \\
\\
f\left(g x_{1}\right) x_{2} \\
\operatorname{comp}_{2}= \\
\text { fun } f \rightarrow \text { fun } g \rightarrow \text { fun } x_{1} \rightarrow \text { fun } x_{2} \rightarrow \\
\\
f x_{1}\left(g x_{2}\right)
\end{array}
\end{aligned}
$$

Example:

$$
\left.\begin{array}{l}
\text { sum }=\text { foldl }(+) 0 \\
\text { length }=\operatorname{let} f=\operatorname{map}(\text { fun } x \rightarrow 1) \\
\text { in comp sum } f
\end{array} \quad \begin{array}{rl}
\text { dev }=\text { fun } l \rightarrow \text { let } s_{1} & =\operatorname{sum} l \\
n & =\text { length } l \\
\text { mean } & =s_{1} / n \\
l_{1} & =\operatorname{map}(\text { fun } x \rightarrow x-\text { mean }) l \\
l_{2} & =\operatorname{map}(\text { fun } x \rightarrow x \cdot x) l_{1} \\
s_{2} & =\operatorname{sum} l_{2} \\
\text { in } s_{2} / n
\end{array}\right] .
$$

Observations:

- Explicit recursion does no longer occur!
- The implementation creates unnecessary intermediate data-structures!
length could also be implemented as:

$$
\begin{aligned}
\text { length }= & \text { let } f=\text { fun } a \rightarrow \text { fun } x \rightarrow a+1 \\
& \text { in foldl } f 0
\end{aligned}
$$

- This implementation avoids to create intermediate lists !!!

Simplification Rules:

$$
\begin{array}{ll}
\operatorname{compid} f & =\operatorname{comp} f \text { id }=f \\
\operatorname{comp}_{1} f \text { id } & =\operatorname{comp}_{2} f \text { id }=f \\
\operatorname{map} \operatorname{id} & =\text { id } \\
\operatorname{comp}(\operatorname{map} f)(\operatorname{map} g) & =\operatorname{map}(\operatorname{comp} f g) \\
\operatorname{comp}(\text { foldl } f a)(\operatorname{map} g) & =\operatorname{foldl}\left(\operatorname{comp}_{2} f g\right) a
\end{array}
$$

Simplification Rules:

compid f	$=\operatorname{comp} f$ id $=f$
comp $_{1} f$ id	$=$ comp $_{2} f$ id $=f$
map id	$=\mathrm{id}$
comp (map f) (map g)	$=\operatorname{map}(\operatorname{comp} f g)$
comp (foldl $f a)($ map g)	$=$ foldl $\left(\mathrm{comp}_{2} f \mathrm{~g}\right) a$
$\operatorname{comp}\left(\right.$ filter p_{1}) (filter p_{2})	$\begin{aligned} =\text { filter }(\text { fun } x \rightarrow & \text { if } p_{2} x \text { then } p_{1} x \\ & \text { else false }) \end{aligned}$
$\operatorname{comp}($ foldl $f a)($ filter p)	$=\text { let } h=\text { fun } a \rightarrow \text { fun } x \rightarrow \text { if } p x \text { then } f a$

in foldl $h a$

Warning:

Function compositions also could occur as nested function calls ...

$$
\begin{array}{ll}
\text { id } x & =x \\
\operatorname{map} \text { id } l & =l \\
\operatorname{map} f(\operatorname{map} g l)= & \operatorname{map}(\operatorname{comp} f g) l \\
\text { foldl } f a(\operatorname{map} g l)= & \text { foldl }\left(\operatorname{comp}_{2} f g\right) a l \\
\text { filter } p_{1}\left(\text { filter } p_{2} l\right)= & \text { filter }\left(\mathbf{f u n} x \rightarrow p_{1} x \wedge p_{2} x\right) l \\
\text { foldl } f a(\text { filter } p l)= & \mathbf{l e t} h=\text { fun } a \rightarrow \mathbf{f u n} x \rightarrow \\
& \text { if } p x \text { then } f a x \\
& \text { in foldl } h a l
\end{array}
$$

Example, optimized:

$$
\begin{aligned}
& \text { sum }=\text { foldl }(+) 0 \\
& \text { length }=\text { let } f=\operatorname{comp}_{2}(+)(\text { fun } x \rightarrow 1) \\
& \text { in foldl } f 0 \\
& \operatorname{dev} \quad=\text { fun } l \rightarrow \text { let } s_{1} \quad=\operatorname{sum} l \\
& n \quad=\text { length } l \\
& \text { mean }=s_{1} / n \\
& f \quad=\operatorname{comp}(\text { fun } x \rightarrow x \cdot x) \\
& \text { (fun } x \rightarrow x \text { - mean) } \\
& g=\operatorname{comp}_{2}(+) f \\
& s_{2} \quad=\text { foldl } g 0 l \\
& \text { in } s_{2} / n
\end{aligned}
$$

Remarks:

- All intermediate lists have disappeared :-)
- Only foldl remain - i.e., loops :-))
- Compositions of functions can be further simplified in the next step by Inlining.
- Inside dev, we then obtain:

$$
\begin{gathered}
g=\text { fun } a \rightarrow \text { fun } x \rightarrow \text { let } x_{1}=x-\text { mean } \\
x_{2}=x_{1} \cdot x_{1} \\
\text { in } a+x_{2}
\end{gathered}
$$

- The result is a sequence of let-definitions !!!

Extension: Tabulation

If the list has been created by tabulation of a function, the creation of the list sometimes can be avoided ...

```
tabulate \(=\) fun \(j \rightarrow\) fun \(f \rightarrow\) fun \(n \rightarrow\)
    if \(j \geq n\) then []
    else \((f j)::\) tabulate' \((j+1) f n\)
tabulate \(=\) tabulate' 0
```

Then we have:

$$
\begin{aligned}
\operatorname{comp}(\operatorname{map} f)(\text { tabulate } g) & =\text { tabulate }(\operatorname{comp} f g) \\
\operatorname{comp}(\text { fold } f a)(\text { tabulate } g) & =\operatorname{loop}\left(\operatorname{comp}_{2} f g\right) a
\end{aligned}
$$

where:

$$
\begin{array}{ll}
\text { loop }^{\prime}=\text { fun } j \rightarrow & \begin{array}{l}
\text { fun } f \rightarrow \text { fun } a \rightarrow \text { fun } n \rightarrow \\
\text { if } j \geq n \text { then } a
\end{array} \\
\text { else } \left.\text { loop }^{\prime}(j+1) f(f a j)\right) n
\end{array} \quad \begin{aligned}
& \text { loop }=\text { loop }^{\prime} 0
\end{aligned}
$$

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

$$
\text { foldr } f a=\operatorname{comp}(\text { foldl }(\operatorname{swap} f) a) \text { rev }
$$

Discussion:

- The standard implementation of foldr is not tail-recursive.
- The last equation decomposes a foldr into two tail-recursive functions - at the price that an intermediate list is created.
- Therefore, the standard implementation is probably faster :-)
- Sometimes, the operation rev can also be optimized away ...

We have:

```
comp rev (map f) = comp (map f) rev
comp rev (filter p) =comp (filter p) rev
comp rev (tabulate f) = rev_tabulate f
```

Here, rev_tabulate tabulates in reverse ordering. This function has properties quite analogous to tabulate:

$$
\begin{aligned}
& \operatorname{comp}(\operatorname{map} f)(\text { rev_tabulate } g)=\text { rev_tabulate }\left(\operatorname{comp}_{2} f g\right) \\
& \operatorname{comp}(\text { foldl } f a)(\text { rev_tabulate } g)=r e v _l o o p\left(\operatorname{comp}_{2} f g\right) a
\end{aligned}
$$

Extension (3): Dependencies on the Index

- Correctness is proven by induction on the lengthes of occurring lists.
- Similar composition results also hold for transformations which take the current indices into account:

$$
\begin{array}{cc}
\text { mapi }^{\prime}=\text { fun } i \rightarrow \text { fun } f \rightarrow \text { fun } l \rightarrow \text { match } l \text { with }[] \rightarrow[] \\
\left\lvert\, \begin{array}{c}
\mid: z \rightarrow(\text { match } z \text { with }(x, x s) \rightarrow \\
\\
\\
\text { mapi }=\text { mapi }^{\prime} 0
\end{array}\right.
\end{array}
$$

Analogously, there is index-dependent accumulation:

$$
\left.\begin{array}{rl}
\text { foldli }^{\prime}=\text { fun } i \rightarrow & \text { fun } f \rightarrow \text { fun } a \rightarrow \text { fun } l \rightarrow \\
& \text { match } l \text { with }[] \rightarrow a
\end{array}\right)
$$

For composition, we must take care that always the same indices are used. This is achieved by:

$$
\begin{aligned}
& \text { compi }=\text { fun } f \rightarrow \text { fun } g \rightarrow \text { fun } i \rightarrow \text { fun } x \rightarrow f i(g i x) \\
& \text { compi }_{1}=\text { fun } f \rightarrow \text { fun } g \rightarrow \text { fun } i \rightarrow \text { fun } x_{1} \rightarrow \text { fun } x_{2} \rightarrow \\
& f i\left(g i x_{1}\right) x_{2} \\
& \text { compi }_{2}=\text { fun } f \rightarrow \text { fun } g \rightarrow \text { fun } i \rightarrow \text { fun } x_{1} \rightarrow \text { fun } x_{2} \rightarrow \\
& f i x_{1}\left(g i x_{2}\right) \\
& \mathrm{cmp}_{1}=\text { fun } f \rightarrow \text { fun } g \rightarrow \text { fun } i \rightarrow \text { fun } x_{1} \rightarrow \text { fun } x_{2} \rightarrow \\
& f i x_{1}\left(g x_{2}\right) \\
& \mathrm{cmp}_{2}=\text { fun } f \rightarrow \text { fun } g \rightarrow \text { fun } i \rightarrow \text { fun } x_{1} \rightarrow \text { fun } x_{2} \rightarrow \\
& f x_{1}\left(g i x_{2}\right)
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \operatorname{comp}(\text { mapi } f)(\text { map } g) \quad=\quad \operatorname{mapi}\left(\operatorname{comp}_{2} f g\right) \\
& \operatorname{comp}(\operatorname{map} f)(\text { mapi } g) \quad=\operatorname{mapi}(\operatorname{comp} f g) \\
& \operatorname{comp}(\text { mapi } f)(\text { mapi } g) \quad=\operatorname{mapi}(\operatorname{compi} f g) \\
& \operatorname{comp}(\text { foldli } f a)(\operatorname{map} g)=\text { foldli }\left(\mathrm{cmp}_{1} f g\right) a \\
& \operatorname{comp}(\text { foldl } f a)(\text { mapi } g)=\text { foldli }\left(\mathrm{cmp}_{2} f g\right) a \\
& \text { comp (foldlif } f \text {) (mapi } g)=\text { foldli }\left(\text { compi }_{2} f g\right) a \\
& \text { comp (foldlif } a \text {) (tabulate } g \text {) }=\text { let } h=\text { fun } a \rightarrow \text { fun } i \rightarrow \\
& \text { fia(gi) }
\end{aligned}
$$

in loopha

Discussion:

- Warning: index-dependent transformations may not commute with rev or filter.
- All our rules can only be applied if the functions id, map, mapi, foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ... are provided by a standard library: Only then the algebraic properties can be guaranteed !!!
- Similar simplification rules can be derived for any kind of tree-like data-structure tree α.
- These also provide operations map, mapi and foldl, foldli with corresponding rules.
- Further opportunities are opened up by functions to_list and from_list ...

