Example

type tree « = Leaf | Node « (tree «) (tree a)
map = fun f — funt — matcht with Leaf — Leaf
| Nodexlr — let I' = mapfl

' = mapfr

in Node (fx)!I' 7

foldl = funf — funa — funt — match f with Leaf — a4
| NodexIr — leta’ =foldl fal
in foldl f (fa'x)r

839

to listt = funa — funt — match t with Leaf — 4
| Nodext t, — let a = to_list' at,
in to_list’ (x::d') t

to_list = to_list’ []

from_list = funl —
match [with || — Leaf
| ::z — (match z with (x,xs) —

Node x Leaf (from_list xs)

840

Warning:

Not every natural equation is valid:

comp to_list from_list = id

comp from_list to_list #+ id

comp to_list (map f) = comp (map f) to_list
comp from_list (map f) = comp (map f) from_list
comp (foldl f a) to_list = foldl f a

comp (foldl f a) from_list = foldl f a

841

In this case, there is even a rev:

rev = funt —
match ¢t with Leaf — Leaf
| Nodextit, — let s = revh
S, = rev iy

in Node x sy sq

comp to_list rev = comp rev to_list

comp from_list rev # comp rev from_list

842

46 CBN vs. CBV: Strictness Analysis

Problem:

e Programming languages such as Haskell evaluate
expressions for let-defined variables and actual parameters
not before their values are accessed.

e This allows for an elegant treatment of (possibly) infinite lists
of which only small initial segments are required for
computing the result :-)

e Delaying evaluation by default incures, though, a non-trivial
overhead ...

843

Example

from = funn — n:from (n+1)

take funk — funs — ifk <0 then |]

else matchswith || — []
| 1z — match z with (x,xs) —
x ::take (k—1) xs

844

Then CBN yields:

take 5 (from 0) = [0, 1,2, 3, 4]

— whereas evaluation with CBV does not terminate !!!

845

Then CBN yields:

take 5 (from 0) = [0, 1,2, 3, 4]

— whereas evaluation with CBV does not terminate !!!

On the other hand, for CBN, tail-recursive functions may require
non-constant space 7?7

fac2 = funx — funa — ifx <0 thena
else fac2 (x —1) (a- x)

846

Discussion:

e The multiplications are collected in the accumulating
parameter through nested closures.

e Only when the value of a call fac2 x 1 is accessed, this
dynamic data-structure is evaluated.

e Instead, the accumulating parameter should have been
passed directly by-value !!!

e Thisis the goal of the following optimization ...

847

Simplification:

e At first, we rule out data-structures, higher-order functions,
and local function definitions.

e We introduce an unary operator # which forces the evaluation
of a variable.

e Goal of the transformation is to place # at as many places as
possible ...

848

Simplification:

o At first, we rule out data-structures, higher-order functions,
and local function definitions.

e We introduce an unary operator # which forces the evaluation
of a variable.

e Goal of the transformation is to place # at as many places as
possible ...

e n= c|x|egOyey | Oye| feg ... e | if ep then e; else e,
| letr; = e ine
= x| #x
d = fx1...x=e¢

p = letrecand d; ... and d, ine

849

Idea:

e Describe a k-ary function
frint — ... — int

by a function
[fI":B—... =B

e Omeans: evaluation does definitely not terminate.

e lmeans: evaluation may terminate.

e [fJ0=0 means:]If the function call returns a value, then
the evaluation of the argument must have terminated and
returned a value.

— f is strict.

850

Idea (cont.):

e We determine the abstract semantics of all functions :-)

e For that, we put up a system of equations ...

Auxiliary Function:

[e]* . (Vars — B) — B

[c]* p = 1

[x]* p = px

[0] p = [el*p

ler Oz e2]" p = [el]* p A [e] p

[if ¢o then e else e;]* p = [eo]* p A ([er]* o V [ea]* p)
[fer...alp = [fI* ([ea]* o) ... (Tex] p)

851

[e]?* (p® {x1 — [e:]* p})
[let #x; = e;ine]* p = ([ei]* p) A ([e]* (p @ {x1 — 1}))

[let x; = e; ine] p

System of Equations:

[[fi]]ﬁbl oo b = [[ei]]ﬁ {le—>b]' | j:1,...,k}, i=1,...,n,by,...,b € B

e The unkowns of the system of equations are the functions
[£:]} or the individual entries [f;]*b; ... by in the value table.
e Allright-hand sides are monotonic!

e Consequently, there is a least solution :-)

e The complete lattice B — ... — B has height O(2F) :~(

852

Example:

For fac2, we obtain:

ﬂfac2]]ﬁ bl bz — bl A\ (bz\/
[[fac2]]ﬁ bl (bl A\ bz))

Fixpoint iteration yields:

O funx — funa — 0

funx — funa — x N a

2| funx — funa — x N a

853

We conclude:

e The function fac2 is strict in both arguments, i.e., if evaluation
terminates, then also the evaluation of its arguments.

e Accordingly, we transform:

fac2 = funx — funa — ifx <0 thena
else let #x' = x—1
#a = x-a

in fac2 x' 4’

854

Correctness of the Analysis:

o The system of equations is an abstract denotational semantics.

e The denotational semantics characterizes the meaning of
functions as least solution of the corresponding equations for
the concrete semantics.

e For values, the denotational semantics relies on the complete
partial ordering Z,.

e For complete partial orderings, Kleene’s fixpoint theorem is
applicable :-)

e Asdescription relation A we use:

1 AOQ und zA1 firzeZ

855

Extension: Data-Structures

e Functions may vary in the parts which they require from a
data-structure ...

hd = fun! — match!with:z —

match z with (x,xs) — x

e hd only accesses the first element of a list.
e length only accesses the backbone of its argument.

e rev forces the evaluation of the complete argument — given
that the result is required completely ...

856

