Example

type tree
$$\alpha$$
 = Leaf | Node α (tree α) (tree α)
map = **fun** $f \rightarrow$ **fun** $t \rightarrow$ **match** t **with** Leaf \rightarrow Leaf
| Node $x \ l \ r \rightarrow$ **let** $l' = map f \ l$
 $r' = map f \ r$
in Node $(f \ x) \ l' \ r'$

to_list = to_list' []

from_list = fun $l \rightarrow$ match l with $[] \rightarrow$ Leaf $| :: z \rightarrow$ (match z with $(x, xs) \rightarrow$ Node x Leaf (from_list xs)

Warning:

Not every natural equation is valid:

comp to_list from_list=idcomp from_list to_list \neq idcomp to_list (map f)=comp (map f) to_listcomp from_list (map f)=comp (map f) from_listcomp (foldl f a) to_list=foldl f acomp (foldl f a) from_list=foldl f a

In this case, there is even a rev:

comp to_list rev = comp rev to_list comp from_list rev ≠ comp rev from_list

4.6 CBN vs. CBV: Strictness Analysis

Problem:

- Programming languages such as Haskell evaluate expressions for **let**-defined variables and actual parameters not before their values are accessed.
- This allows for an elegant treatment of (possibly) infinite lists of which only small initial segments are required for computing the result :-)
- Delaying evaluation by default incures, though, a non-trivial overhead ...

Example

from = fun
$$n \rightarrow n$$
:: from $(n+1)$

take = fun
$$k \rightarrow$$
 fun $s \rightarrow$ if $k \leq 0$ then []
else match s with [] \rightarrow []
 $| :: z \rightarrow$ match z with $(x, xs) \rightarrow$
 $x :: take (k-1) xs$

Then CBN yields:

take 5 (from 0) = [0, 1, 2, 3, 4]

— whereas evaluation with CBV does not terminate !!!

Then CBN yields:

take 5 (from 0) = [0, 1, 2, 3, 4]

— whereas evaluation with CBV does not terminate !!!

On the other hand, for CBN, tail-recursive functions may require non-constant space ???

 $\begin{aligned} & \mathsf{fac2} &= & \mathsf{fun} \ x \ \to \ \mathsf{fun} \ a \ \to \ & \mathsf{if} \ x \leq 0 \ \mathsf{then} \ a \\ & \mathsf{else} \ \ \mathsf{fac2} \ (x-1) \ (a \cdot x) \end{aligned}$

Discussion:

- The multiplications are collected in the accumulating parameter through nested closures.
- Only when the value of a call fac2 *x* 1 is accessed, this dynamic data-structure is evaluated.
- Instead, the accumulating parameter should have been passed directly by-value !!!
- This is the goal of the following optimization ...

Simplification:

- At first, we rule out data-structures, higher-order functions, and local function definitions.
- We introduce an unary operator # which forces the evaluation of a variable.
- Goal of the transformation is to place # at as many places as possible ...

Simplification:

- At first, we rule out data-structures, higher-order functions, and local function definitions.
- We introduce an unary operator # which forces the evaluation of a variable.
- Goal of the transformation is to place # at as many places as possible ...

e ::=
$$c | x | e_1 \Box_2 e_2 | \Box_1 e | f e_1 \dots e_k |$$
 if e_0 then e_1 else e_2
| let $r_1 = e_1$ in *e*

$$r \qquad ::= \quad x \mid \# x$$

$$d \qquad ::= f x_1 \ldots x_k = e$$

p ::= letrec and d_1 ... and d_n in e

Idea:

• Describe a *k*-ary function

$$f: \mathbf{int} \to \ldots \to \mathbf{int}$$

by a function

$$\llbracket f \rrbracket^{\sharp} : \mathbb{B} \to \ldots \to \mathbb{B}$$

- 0 means: evaluation does definitely not terminate.
- 1 means: evaluation may terminate.
- [[f]][#] 0 = 0 means: If the function call returns a value, then the evaluation of the argument must have terminated and returned a value.

 $\implies f \text{ is strict.}$

Idea (cont.):

. . .

- We determine the abstract semantics of all functions :-)
- For that, we put up a system of equations ...

Auxiliary Function:

$\llbracket e \rrbracket^{\sharp}$	•	$(Vars \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
$\llbracket c \rrbracket^{\sharp} ho$	=	1
$\llbracket x \rrbracket^{\sharp} ho$	=	ρx
$\llbracket \Box_1 \ e \rrbracket^{\sharp} \ \rho$	=	$\llbracket e \rrbracket^{\sharp} ho$
$\llbracket e_1 \Box_2 e_2 \rrbracket^{\sharp} \rho$	=	$\llbracket e_1 \rrbracket^{\sharp} \rho \land \llbracket e_2 \rrbracket^{\sharp} \rho$
$\llbracket \mathbf{if} \ e_0 \ \mathbf{then} \ e_1 \ \mathbf{else} \ e_2 \rrbracket^{\sharp} \rho$	=	$\llbracket e_0 \rrbracket^{\sharp} \rho \wedge (\llbracket e_1 \rrbracket^{\sharp} \rho \lor \llbracket e_2 \rrbracket^{\sharp} \rho)$
$\llbracket f \ e_1 \ \ldots \ e_k rbracket^{\sharp} ho$	=	$\llbracket f \rrbracket^{\sharp} (\llbracket e_1 \rrbracket^{\sharp} \rho) \ldots (\llbracket e_k \rrbracket^{\sharp} \rho)$

$$\begin{bmatrix} [let \ x_1 = e_1 \ in \ e] \end{bmatrix}^{\sharp} \rho = \begin{bmatrix} e \end{bmatrix}^{\sharp} (\rho \oplus \{x_1 \mapsto [e_1]]^{\sharp} \ \rho\})$$
$$\begin{bmatrix} let \ \#x_1 = e_1 \ in \ e] \end{bmatrix}^{\sharp} \rho = ([[e_1]]^{\sharp} \ \rho) \land ([[e]]^{\sharp} \ (\rho \oplus \{x_1 \mapsto 1\}))$$

System of Equations:

 $\llbracket f_i \rrbracket^{\sharp} b_1 \dots b_k = \llbracket e_i \rrbracket^{\sharp} \{ x_j \mapsto b_j \mid j = 1, \dots, k \}, \qquad i = 1, \dots, n, b_1, \dots, b_k \in \mathbb{B}$

- The unkowns of the system of equations are the functions $[\![f_i]\!]^{\sharp}$ or the individual entries $[\![f_i]\!]^{\sharp}b_1 \dots b_k$ in the value table.
- All right-hand sides are monotonic!
- Consequently, there is a least solution :-)
- The complete lattice $\mathbb{B} \to \ldots \to \mathbb{B}$ has height $\mathcal{O}(2^k)$:-(

Example:

For fac2, we obtain:

$$\llbracket \text{fac2} \rrbracket^{\sharp} b_1 \ b_2 = b_1 \land (b_2 \lor \\ \llbracket \text{fac2} \rrbracket^{\sharp} b_1 \ (b_1 \land b_2))$$

Fixpoint iteration yields:

$$\begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix} \begin{array}{c} \mathbf{fun} x \to \mathbf{fun} a \to \mathbf{0} \\ \mathbf{fun} x \to \mathbf{fun} a \to x \land a \\ \mathbf{fun} x \to \mathbf{fun} a \to x \land a \end{vmatrix}$$

We conclude:

- The function fac2 is strict in both arguments, i.e., if evaluation terminates, then also the evaluation of its arguments.
- Accordingly, we transform:

$$fac2 = fun x \rightarrow fun a \rightarrow if x \le 0 then a$$

else let $\# x' = x - 1$
 $\# a' = x \cdot a$
in fac2 x' a'

Correctness of the Analysis:

- The system of equations is an abstract denotational semantics.
- The denotational semantics characterizes the meaning of functions as least solution of the corresponding equations for the concrete semantics.
- For values, the denotational semantics relies on the complete partial ordering \mathbb{Z}_{\perp} .
- For complete partial orderings, Kleene's fixpoint theorem is applicable :-)
- As description relation \triangle we use:

 $\perp \Delta 0$ und $z \Delta 1$ für $z \in \mathbb{Z}$

Extension: Data-Structures

• Functions may vary in the parts which they require from a data-structure ...

$$hd = fun \ l \rightarrow match \ l with :: z \rightarrow match \ z with \ (x, xs) \rightarrow x$$

- hd only accesses the first element of a list.
- length only accesses the backbone of its argument.
- rev forces the evaluation of the complete argument given that the result is required completely ...