
Example

type tree α = Leaf | Node α (tree α) (tree α)

map = fun f → fun t → match t with Leaf → Leaf

| Node x l r → let l′ = map f l

r′ = map f r

in Node ( f x) l′ r′

foldl = fun f → fun a → fun t → match t with Leaf → a

| Node x l r → let a′ = foldl f a l

in foldl f ( f a′ x) r
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to_list′ = fun a → fun t → match t with Leaf → a

| Node x t1 t2 → let a′ = to_list′ a t2

in to_list′ (x :: a′) t1

to_list = to_list′ [ ]

from_list = fun l →

match l with [ ] → Leaf

| :: z → (match z with (x, xs) →

Node x Leaf (from_list xs)
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Warning:

Not every natural equation is valid:

comp to_list from_list = id

comp from_list to_list 6= id

comp to_list (map f ) = comp (map f ) to_list

comp from_list (map f ) = comp (map f ) from_list

comp (foldl f a) to_list = foldl f a

comp (foldl f a) from_list = foldl f a

841



In this case, there is even a rev:

rev = fun t →

match t with Leaf → Leaf

| Node x t1 t2 → let s1 = rev t1

s2 = rev t2

in Node x s2 s1

comp to_list rev = comp rev to_list

comp from_list rev 6= comp rev from_list
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4.6 CBN vs. CBV: Strictness Analysis

Problem:

• Programming languages such as Haskell evaluate

expressions for let-defined variables and actual parameters

not before their values are accessed.

• This allows for an elegant treatment of (possibly) infinite lists

of which only small initial segments are required for

computing the result :-)

• Delaying evaluation by default incures, though, a non-trivial

overhead ...
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Example

from = fun n → n :: from (n + 1)

take = fun k → fun s → if k ≤ 0 then [ ]

else match s with [ ] → [ ]

| :: z → match z with (x, xs) →

x :: take (k− 1) xs
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Then CBN yields:

take 5 (from 0) = [0, 1, 2, 3, 4]

— whereas evaluation with CBV does not terminate !!!
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Then CBN yields:

take 5 (from 0) = [0, 1, 2, 3, 4]

— whereas evaluation with CBV does not terminate !!!

On the other hand, for CBN, tail-recursive functions may require

non-constant space ???

fac2 = fun x → fun a → if x ≤ 0 then a

else fac2 (x− 1) (a · x)
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Discussion:

• The multiplications are collected in the accumulating

parameter through nested closures.

• Only when the value of a call fac2 x 1 is accessed, this

dynamic data-structure is evaluated.

• Instead, the accumulating parameter should have been

passed directly by-value !!!

• This is the goal of the following optimization ...
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Simplification:

• At first, we rule out data-structures, higher-order functions,

and local function definitions.

• We introduce an unary operator # which forces the evaluation

of a variable.

• Goal of the transformation is to place # at as many places as

possible ...
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Simplification:

• At first, we rule out data-structures, higher-order functions,

and local function definitions.

• We introduce an unary operator # which forces the evaluation

of a variable.

• Goal of the transformation is to place # at as many places as

possible ...

e ::= c | x | e1 22 e2 | 21 e | f e1 . . . ek | if e0 then e1 else e2

| let r1 = e1 in e

r ::= x | #x

d ::= f x1 . . . xk = e

p ::= letrec and d1 . . . and dn in e
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Idea:

• Describe a k-ary function

f : int → . . . → int

by a function

[[ f ]]♯ : B → . . . → B

• 0 means: evaluation does definitely not terminate.

• 1 means: evaluation may terminate.

• [[ f ]]♯ 0 = 0 means: If the function call returns a value, then

the evaluation of the argument must have terminated and

returned a value.

==⇒ f is strict.
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Idea (cont.):

• We determine the abstract semantics of all functions :-)

• For that, we put up a system of equations ...

Auxiliary Function:

[[e]]♯ : (Vars → B) → B

[[c]]♯ ρ = 1

[[x]]♯ ρ = ρ x

[[21 e]]♯ ρ = [[e]]♯ ρ

[[e1 22 e2]]♯ ρ = [[e1]]♯ ρ ∧ [[e2]]♯ ρ

[[if e0 then e1 else e2]]♯ ρ = [[e0]]♯ ρ ∧ ([[e1]]♯ ρ ∨ [[e2]]♯ ρ)

[[ f e1 . . . ek]]♯ ρ = [[ f ]]♯ ([[e1]]♯ ρ) . . . ([[ek]]♯ ρ)

. . .
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[[let x1 = e1 in e]]♯ ρ = [[e]]♯ (ρ ⊕ {x1 7→ [[e1]]♯ ρ})

[[let #x1 = e1 in e]]♯ ρ = ([[e1]]♯ ρ) ∧ ([[e]]♯ (ρ ⊕ {x1 7→ 1}))

System of Equations:

[[ fi]]
♯b1 . . . bk = [[ei]]

♯ {x j 7→ b j | j = 1, . . . , k}, i = 1, . . . , n, b1, . . . , bk ∈ B

• The unkowns of the system of equations are the functions

[[ fi]]♯ or the individual entries [[ fi]]♯b1 . . . bk in the value table.

• All right-hand sides are monotonic!

• Consequently, there is a least solution :-)

• The complete lattice B → . . . → B has height O(2k) :-(
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Example:

For fac2, we obtain:

[[fac2]]♯ b1 b2 = b1 ∧ (b2∨

[[fac2]]♯ b1 (b1 ∧ b2))

Fixpoint iteration yields:

0 fun x → fun a → 0

1 fun x → fun a → x ∧ a

2 fun x → fun a → x ∧ a

853



We conclude:

• The function fac2 is strict in both arguments, i.e., if evaluation

terminates, then also the evaluation of its arguments.

• Accordingly, we transform:

fac2 = fun x → fun a → if x ≤ 0 then a

else let # x′ = x− 1

# a′ = x · a

in fac2 x′ a′
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Correctness of the Analysis:

• The system of equations is an abstract denotational semantics.

• The denotational semantics characterizes the meaning of

functions as least solution of the corresponding equations for

the concrete semantics.

• For values, the denotational semantics relies on the complete

partial ordering Z⊥.

• For complete partial orderings, Kleene’s fixpoint theorem is

applicable :-)

• As description relation ∆ we use:

⊥ ∆ 0 und z ∆ 1 für z ∈ Z
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Extension: Data-Structures

• Functions may vary in the parts which they require from a

data-structure ...

hd = fun l → match l with :: z →

match z with (x, xs) → x

• hd only accesses the first element of a list.

• length only accesses the backbone of its argument.

• rev forces the evaluation of the complete argument — given

that the result is required completely ...
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