Example

$$
\begin{aligned}
& \text { type tree } \alpha=\text { Leaf } \mid \operatorname{Node} \alpha(\text { tree } \alpha)(\text { tree } \alpha) \\
& \text { map } \quad=\text { fun } f \rightarrow \text { fun } t \rightarrow \text { match } t \text { with Leaf } \rightarrow \text { Leaf } \\
& \mid \text { Node } x l r \rightarrow \text { let } l^{\prime}=\operatorname{map} f l \\
& r^{\prime}=\operatorname{map} f r \\
& \text { in Node (} f x \text {) } l^{\prime} r^{\prime} \\
& \text { foldl } \quad=\text { fun } f \rightarrow \text { fun } a \rightarrow \text { fun } t \rightarrow \text { match } t \text { with Leaf } \rightarrow a \\
& \mid \text { Node } x l r \rightarrow \quad \text { let } a^{\prime}=\text { foldl } f a l \\
& \text { in foldl } f\left(f a^{\prime} x\right) r
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { to_list }^{\prime}= & \text { fun } a \rightarrow \text { fun } t \rightarrow \text { match } t \text { with Leaf } \rightarrow a \\
\mid \text { Node } x t_{1} t_{2} \rightarrow & \begin{array}{l}
\text { let } a^{\prime}={\text { to_list' } a t_{2}}
\end{array} \\
\text { in to_list' }\left(x:: a^{\prime}\right) t_{1}
\end{array} \\
& \text { to_list }=\text { to_list }^{\prime}[]
\end{aligned}
$$

$$
\text { from_list }=\text { fun } l \rightarrow
$$

$$
\text { match } l \text { with }[] \rightarrow \text { Leaf }
$$

$$
\mid:: z \rightarrow(\text { match } z \text { with }(x, x s) \rightarrow
$$

$$
\text { Node } x \text { Leaf (from_list } x s \text {) }
$$

Warning:

Not every natural equation is valid:

$$
\begin{array}{ll}
\text { comp to_list from_list } & =\text { id } \\
\text { comp from_list to_list } & \neq \text { id } \\
\text { comp to_list }(\operatorname{map} f) & =\operatorname{comp}(\operatorname{map} f) \text { to_list } \\
\text { comp from_list }(\operatorname{map} f) & =\operatorname{comp}(\operatorname{map} f) \text { from_list } \\
\operatorname{comp}(\text { foldl } f a) \text { to_list } & =\text { foldl } f a \\
\operatorname{comp}(\text { foldl } f a) \text { from_list } & =\text { foldl } f a
\end{array}
$$

In this case, there is even a rev:
rev

$$
\begin{aligned}
&=\quad \text { fun } t \rightarrow \\
& \text { match } t \text { with Leaf } \rightarrow \quad \text { Leaf }
\end{aligned}
$$

$$
\mid \text { Node } x t_{1} t_{2} \rightarrow \quad \text { let } s_{1}=\operatorname{rev} t_{1}
$$

$$
s_{2}=\operatorname{rev} t_{2}
$$

in Node $x s_{2} s_{1}$
comp to_list rev = comp rev to_list
comp from_list rev \neq comp rev from_list

4.6 CBN vs. CBV: Strictness Analysis

Problem:

- Programming languages such as Haskell evaluate expressions for let-defined variables and actual parameters not before their values are accessed.
- This allows for an elegant treatment of (possibly) infinite lists of which only small initial segments are required for computing the result :-)
- Delaying evaluation by default incures, though, a non-trivial overhead ...

Example

$$
\begin{aligned}
& \text { from }=\text { fun } n \rightarrow n:: \text { from }(n+1) \\
& \text { take }=\text { fun } k \rightarrow \text { fun } s \rightarrow \text { if } k \leq 0 \text { then [] } \\
& \text { else match } s \text { with [] } \rightarrow \text { [] } \\
& \mid:: z \rightarrow \text { match } z \text { with }(x, x s) \rightarrow \\
& x:: \text { take }(k-1) x s
\end{aligned}
$$

Then CBN yields:

$$
\text { take } 5(\text { from } 0)=[0,1,2,3,4]
$$

- whereas evaluation with CBV does not terminate !!!

Then CBN yields:

$$
\text { take } 5(\text { from } 0)=[0,1,2,3,4]
$$

- whereas evaluation with CBV does not terminate !!!

On the other hand, for CBN, tail-recursive functions may require non-constant space ???

$$
\begin{aligned}
\text { fac2 }=\text { fun } x \rightarrow \text { fun } a \rightarrow & \text { if } x \leq 0 \text { then } a \\
& \text { else fac2 }(x-1)(a \cdot x)
\end{aligned}
$$

Discussion:

- The multiplications are collected in the accumulating parameter through nested closures.
- Only when the value of a call fac2 $x 1$ is accessed, this dynamic data-structure is evaluated.
- Instead, the accumulating parameter should have been passed directly by-value !!!
- This is the goal of the following optimization ...

Simplification:

- At first, we rule out data-structures, higher-order functions, and local function definitions.
- We introduce an unary operator \# which forces the evaluation of a variable.
- Goal of the transformation is to place \# at as many places as possible ...

Simplification:

- At first, we rule out data-structures, higher-order functions, and local function definitions.
- We introduce an unary operator \# which forces the evaluation of a variable.
- Goal of the transformation is to place \# at as many places as possible ...
$e \quad::=c|x| e_{1} \square_{2} e_{2}\left|\square_{1} e\right| f e_{1} \ldots e_{k} \mid$ if e_{0} then e_{1} else e_{2} let $r_{1}=e_{1}$ in e
$r::=x \mid \# x$
$d::=f x_{1} \ldots x_{k}=e$
$p \quad::=$ letrec and $d_{1} \ldots$ and d_{n} in e

Idea:

- Describe a k-ary function

$$
f: \text { int } \rightarrow \ldots \rightarrow \text { int }
$$

by a function

$$
\llbracket f \rrbracket^{\sharp}: \mathbb{B} \rightarrow \ldots \rightarrow \mathbb{B}
$$

- 0 means: evaluation does definitely not terminate.
- 1 means: evaluation may terminate.
- $\llbracket f \rrbracket^{\sharp} 0=0$ means: If the function call returns a value, then the evaluation of the argument must have terminated and returned a value.
$\Longrightarrow f$ is strict.

Idea (cont.):

- We determine the abstract semantics of all functions :-)
- For that, we put up a system of equations ...

Auxiliary Function:

$$
\begin{array}{ll}
\llbracket \llbracket \rrbracket^{\sharp} & : \quad(\text { Vars } \rightarrow \mathbb{B}) \rightarrow \mathbb{B} \\
\llbracket c \rrbracket^{\sharp} \rho & =1 \\
\llbracket x \rrbracket^{\sharp} \rho & =\rho x \\
\llbracket \square_{1} e \rrbracket^{\sharp} \rho & =\llbracket e \rrbracket^{\sharp} \rho \\
\llbracket e_{1} \square_{2} e_{2} \rrbracket^{\sharp} \rho & =\llbracket e_{1} \rrbracket^{\sharp} \rho \wedge \llbracket e_{2} \rrbracket^{\sharp} \rho \\
\llbracket \text { if } e_{0} \text { then } e_{1} \text { else } e_{2} \rrbracket^{\sharp} \rho & =\llbracket e_{0} \rrbracket^{\sharp} \rho \wedge\left(\llbracket e_{1} \rrbracket^{\sharp} \rho \vee \llbracket e_{2} \rrbracket^{\sharp} \rho\right) \\
\llbracket f e_{1} \ldots e_{k} \rrbracket^{\sharp} \rho & =\llbracket f \rrbracket^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} \rho\right) \ldots\left(\llbracket e_{k} \rrbracket^{\sharp} \rho\right)
\end{array}
$$

$$
\begin{aligned}
& \llbracket \text { let } x_{1}=e_{1} \text { in } e \rrbracket^{\sharp} \rho=\llbracket e \rrbracket^{\sharp}\left(\rho \oplus\left\{x_{1} \mapsto \llbracket e_{1} \rrbracket^{\sharp} \rho\right\}\right) \\
& \llbracket \text { let } \# x_{1}=e_{1} \text { in } e \rrbracket^{\sharp} \rho=\left(\llbracket e_{1} \rrbracket^{\sharp} \rho\right) \wedge\left(\llbracket e \rrbracket^{\sharp}\left(\rho \oplus\left\{x_{1} \mapsto 1\right\}\right)\right)
\end{aligned}
$$

System of Equations:

$\llbracket f_{i} \rrbracket^{\sharp} b_{1} \ldots b_{k}=\llbracket e_{i} \rrbracket^{\sharp}\left\{x_{j} \mapsto b_{j} \mid j=1, \ldots, k\right\}, \quad i=1, \ldots, n, b_{1}, \ldots, b_{k} \in \mathbb{B}$

- The unkowns of the system of equations are the functions $\llbracket f_{i} \rrbracket^{\sharp}$ or the individual entries $\llbracket f_{i} \rrbracket^{\sharp} b_{1} \ldots b_{k}$ in the value table.
- All right-hand sides are monotonic!
- Consequently, there is a least solution :-)
- The complete lattice $\mathbb{B} \rightarrow \ldots \rightarrow \mathbb{B}$ has height $\mathcal{O}\left(2^{k}\right)$

Example:

For fac2, we obtain:

$$
\begin{aligned}
\llbracket \mathrm{fac} 2 \rrbracket^{\sharp} b_{1} b_{2}= & b_{1} \wedge\left(b_{2} \vee\right. \\
& \left.\llbracket \mathrm{fac} 2 \rrbracket^{\sharp} b_{1}\left(b_{1} \wedge b_{2}\right)\right)
\end{aligned}
$$

Fixpoint iteration yields:

$$
\begin{array}{|l||l|}
\hline 0 & \text { fun } x \rightarrow \text { fun } a \rightarrow 0 \\
1 & \text { fun } x \rightarrow \mathbf{f u n} a \rightarrow x \wedge a \\
2 & \text { fun } x \rightarrow \mathbf{f u n} a \rightarrow x \wedge a \\
\hline
\end{array}
$$

We conclude:

- The function fac2 is strict in both arguments, i.e., if evaluation terminates, then also the evaluation of its arguments.
- Accordingly, we transform:

$$
\begin{aligned}
\text { fac2 }=\text { fun } x \rightarrow \text { fun } a \rightarrow \quad \text { if } x \leq 0 \text { then } a & \\
\text { else let } \# x^{\prime} & =x-1 \\
\# a^{\prime} & =x \cdot a
\end{aligned}
$$

in fac2 $x^{\prime} a^{\prime}$

Correctness of the Analysis:

- The system of equations is an abstract denotational semantics.
- The denotational semantics characterizes the meaning of functions as least solution of the corresponding equations for the concrete semantics.
- For values, the denotational semantics relies on the complete partial ordering \mathbb{Z}_{\perp}.
- For complete partial orderings, Kleene's fixpoint theorem is applicable :-)
- As description relation Δ we use:

$$
\perp \Delta 0 \quad \text { und } \quad z \Delta 1 \quad \text { für } z \in \mathbb{Z}
$$

Extension: Data-Structures

- Functions may vary in the parts which they require from a data-structure ...

$$
\begin{aligned}
\text { hd }=\text { fun } l \rightarrow & \text { match } l \text { with }:: z \rightarrow \\
& \text { match } z \text { with }(x, x s) \rightarrow x
\end{aligned}
$$

- hd only accesses the first element of a list.
- length only accesses the backbone of its argument.
- rev forces the evaluation of the complete argument - given that the result is required completely ...

