
Extension: Data Structures

• Functions may vary in the parts which they require from a

data structure ...

hd = fun l → match l with :: z →

match z with (x, xs) → x

• hd only accesses the first element of a list.

• length only accesses the backbone of its argument.

• rev forces the evaluation of the complete argument — given

that the result is required completely ...

856

Extension of the Syntax:

We additionally consider expression of the form:

e ::= . . . | [] | :: e | match e0 with [] → e1 | :: z → e2

| (e1, e2) | match e0 with (x1, x2) → e1

Top Strictness

• We assume that the program is well-typed.

• We are only interested in top constructors.

• Again, we model this property with (monotonic) Boolean

functions.

• For int-values, this coincides with strictness :-)

• We extend the abstract evaluation [[e]]♯ ρ with rules for

case-distinction ...

857

[[match e0 with [] → e1 | :: z → e2]]♯ ρ =

[[e0]]♯ ρ∧ ([[e1]]♯ ρ∨ [[e2]]♯ (ρ⊕ {z 7→ 1}))

[[match e0 with (x1, x2) → e1]]♯ ρ =

[[e0]]♯ ρ ∧ [[e1]]♯ (ρ⊕ {x1, x2 7→ 1})

[[[]]]♯ ρ = [[:: e]]♯ ρ = [[(e1, e2)]]♯ ρ = 1

• The rules formatch are analogous to those for if.

• In case of ::, we know nothing about the values beneath the

constructor; therefore {z 7→ 1}.

• We check our analysis on the function app ...

858

Example:

app = fun x → fun y → match x with [] → y

| :: z → match z with (x, xs) → :: (x, app xs y)

Abstract interpretation yields the system of equations:

[[app]]♯ b1 b2 = b1 ∧ (b2 ∨ 1)

= b1

We conclude that we may conclude for sure only for the first

argument that its top constructor is required :-)

859

Total Strictness

Assume that the result of the function application is totally

required. Which arguments then are also totally required ?

We again refer to Boolean functions ...

[[match e0 with [] → e1 | :: z → e2]]♯ ρ = [[e0]]♯ ρ∧ [[e1]]♯ ρ

∨ [[e2]]♯ (ρ⊕ {z 7→ [[e0]]♯ ρ})

[[match e0 with (x1, x2) → e1]]♯ ρ = let b = [[e0]]♯ ρ

in [[e1]]♯ (ρ⊕ {x1 7→ 1, x2 7→ b}) ∨ [[e1]]♯ (ρ⊕ {x1 7→ b, x2 7→ 1})

[[[]]]♯ ρ = 1

[[:: e]]♯ ρ = [[e]]♯ ρ

[[(e1, e2)]]♯ ρ = [[e1]]♯ ρ ∧ [[e2]]♯ ρ

860

Discussion:

• The rules for constructor applications have changed.

• Also the treatment ofmatch now involves the components z

and x1, x2.

• Again, we check the approach for the function app.

Example:

Abstract interpretation yields the system of equations:

[[app]]♯ b1 b2 = b1 ∧ b2 ∨ b1 ∧ [[app]]♯ 1 b2 ∨ 1 ∧ [[app]]♯ b1 b2

= b1 ∧ b2 ∨ b1 ∧ [[app]]♯ 1 b2 ∨ [[app]]♯ b1 b2

861

This results in the following fixpoint iteration:

0 fun x→ fun y→ 0

1 fun x→ fun y→ x ∧ y

2 fun x→ fun y→ x ∧ y

We deduce that both arguments are definitely totally required if

the result is totally required :-)

Warning:

Whether or not the result is totally required, depends on the

context of the function call!

In such a context, a specialized function may be called ...

862

app# = fun x → fun y → let #x′ = x and #y′ = y in

match ′x with [] → y′

| :: z → match z with (x, xs) →

let # r = :: (x, app# xs y)

in r

Discussion:

• Both strictness analyses employ the same complete lattice.

• Results and application, though, are quite different :-)

• Thereby, we use the following description relations:

Top Strictness : ⊥ ∆ 0

Total Strictness : z ∆ 0 if ⊥ occurs in z.

• Both analyses can also be combined to an a joint analysis ...

863

Combined Strictness Analysis

• We use the complete lattice:

T = {0 ⊏ 1 ⊏ 2}

• The description relation is given by:

⊥ ∆ 0 z ∆ 1 (z contains ⊥) z ∆ 2 (z value)

• The lattice is more informative, the functions, though, are no

longer as efficiently representable, e.g., through Boolean

expressions :-(

• We require the auxiliary functions:

(i ⊑ x); y =

{

y if i ⊑ x

0 otherwise

864

The Combined Evaluation Function:

[[match e0 with [] → e1 | :: z → e2]]♯ ρ =

(2⊑ [[e0]]♯ ρ) ; [[e1]]♯ ρ⊔ (1⊑ [[e0]]♯ ρ) ; [[e2]]♯ (ρ⊕ {z 7→ [[e0]]♯ ρ})

[[match e0 with (x1, x2) → e1]]♯ ρ = let b = [[e0]]♯ ρ

in (1⊑ [[e0]]♯ ρ) ; ([[e1]]♯ (ρ⊕ {x1 7→ 2, x2 7→ b})

⊔ [[e1]]♯ (ρ⊕ {x1 7→ b, x2 7→ 2}))

[[[]]]♯ ρ = 2

[[:: e]]♯ ρ = 1 ⊔ [[e]]♯ ρ

[[(e1, e2)]]♯ ρ = 1 ⊔ ([[e1]]♯ ρ ⊓ [[e2]]♯ ρ)

865

Example:

For our beloved function app, we obtain:

[[app]]♯ d1 d2 = (2⊑ d1) ; d2 ⊔

(1⊑ d1) ; (1 ⊔ [[app]]♯ d1 d2 ⊔ d1 ⊓ [[app]]♯ 2 d2)

= (2⊑ d1) ; d2 ⊔

(1⊑ d1) ; 1 ⊔

(1⊑ d1) ; [[app]]♯ d1 d2 ⊔

d1 ⊓ [[app]]♯ 2 d2

this results in the fixpoint computation:

866

0 fun x→ fun y→ 0

1 fun x→ fun y→ (2⊑ x); y ⊔ (1⊑ x); 1

2 fun x→ fun y→ (2⊑ x); y ⊔ (1⊑ x); 1

We conclude

• that both arguments are totally required if the result is totally

required; and

• that the root of the first argument is required if the root of the

result is required :-)

Remark:

The analysis can be easily generalized such that it guarantees

evaluation up to a depth d ;-)

867

Further Directions:

• Our Approach is also applicable to other data structures.

• In principle, also higher-order (monomorphic) functions can

be analyzed in this way :-)

• Then, however, we require higher-order abstract functions —

of which there are many :-(

• Such functions therefore are approximated by:

fun x1 → . . . fun xr → ⊤

:-)

• For some known higher-order functions such as map, foldl,

loop, ... this approach then should be improved :-))

868

5 Optimization of Logic Programs

We only consider the mini language PuP (“Pure Prolog”). In

particular, we do not consider:

• arithmetic;

• the cut-operator.

• Self-modification by means of assert and retract.

869

Example:

bigger(X,Y) ← X = elephant,Y = horse

bigger(X,Y) ← X = horse,Y = donkey

bigger(X,Y) ← X = donkey,Y = dog

bigger(X,Y) ← X = donkey,Y = monkey

is_bigger(X,Y) ← bigger(X,Y)

is_bigger(X,Y) ← bigger(X, Z), is_bigger(Z,Y)

← is_bigger(elephant, dog)

870

A more realistic Example:

app(X,Y, Z) ← X = [], Y = Z

app(X,Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′,Y, Z′)

← app(X, [Y, c], [a, b, Z])

Remark:

[] === the atom empty list

[H|Z] === binary constructor application

[a, b, Z] === abbreviation for: [a|[b|[Z|[]]]]

871

