## Extension: Data Structures

- Functions may vary in the parts which they require from a data structure ...

$$
\begin{aligned}
\text { hd }=\text { fun } l \rightarrow & \text { match } l \text { with }:: z \rightarrow \\
& \text { match } z \text { with }(x, x s) \rightarrow x
\end{aligned}
$$

- hd only accesses the first element of a list.
- length only accesses the backbone of its argument.
- rev forces the evaluation of the complete argument - given that the result is required completely ...


## Extension of the Syntax:

We additionally consider expression of the form:

$$
\begin{aligned}
e::=\ldots \mid & {[]|:: e| \text { match } e_{0} \text { with }[] \rightarrow e_{1} \mid:: z \rightarrow e_{2} } \\
& \left|\left(e_{1}, e_{2}\right)\right| \text { match } e_{0} \text { with }\left(x_{1}, x_{2}\right) \rightarrow e_{1}
\end{aligned}
$$

## Top Strictness

- We assume that the program is well-typed.
- We are only interested in top constructors.
- Again, we model this property with (monotonic) Boolean functions.
- For int-values, this coincides with strictness :-)
- We extend the abstract evaluation $\llbracket e \rrbracket^{\sharp} \rho$ with rules for case-distinction ...

$$
\begin{aligned}
& \llbracket \text { match } e_{0} \text { with }[] \rightarrow e_{1} \mid:: z \rightarrow e_{2} \rrbracket^{\sharp} \rho= \\
& \llbracket e_{0} \rrbracket^{\sharp} \rho \wedge\left(\llbracket e_{1} \rrbracket^{\sharp} \rho \vee \llbracket e_{2} \rrbracket^{\sharp}(\rho \oplus\{z \mapsto 1\})\right) \\
& \llbracket \text { match } e_{0} \text { with }\left(x_{1}, x_{2}\right) \rightarrow e_{1} \rrbracket^{\sharp} \rho \quad= \\
& \llbracket e_{0} \rrbracket^{\sharp} \rho \wedge \llbracket e_{1} \rrbracket^{\sharp}\left(\rho \oplus\left\{x_{1}, x_{2} \mapsto 1\right\}\right) \\
& \llbracket[] \rrbracket^{\sharp} \rho=\llbracket:: e \rrbracket^{\sharp} \rho=\llbracket\left(e_{1}, e_{2}\right) \rrbracket^{\sharp} \rho \quad=1
\end{aligned}
$$

- The rules for match are analogous to those for if.
- In case of ::, we know nothing about the values beneath the constructor; therefore $\quad\{z \mapsto 1\}$.
- We check our analysis on the function app ...


## Example:

$$
\begin{aligned}
& \text { app }=\text { fun } x \rightarrow \text { fun } y \rightarrow \text { match } x \text { with }[] \rightarrow y \\
& \mid:: z \rightarrow \text { match } z \text { with }(x, x s) \rightarrow::(x, \text { app } x s y)
\end{aligned}
$$

Abstract interpretation yields the system of equations:

$$
\begin{aligned}
\llbracket \mathrm{app} \rrbracket^{\sharp} b_{1} b_{2} & =b_{1} \wedge\left(b_{2} \vee 1\right) \\
& =b_{1}
\end{aligned}
$$

We conclude that we may conclude for sure only for the first argument that its top constructor is required :-)

## Total Strictness

Assume that the result of the function application is totally required. Which arguments then are also totally required?

We again refer to Boolean functions ...

$$
\begin{aligned}
& \llbracket \text { match } e_{0} \text { with }[] \rightarrow e_{1} \mid:: z \rightarrow e_{2} \rrbracket^{\sharp} \rho= \\
& \\
& \\
& \begin{aligned}
& \llbracket \text { match } e_{0} \text { with }\left(x_{1}, x_{2}\right) \rightarrow e_{0} \rrbracket^{\sharp} \rho \wedge \llbracket e^{\sharp} \rrbracket_{1} \rrbracket^{\sharp} \rho \\
& \vee \llbracket e_{2} \rrbracket^{\sharp}\left(\rho \oplus\left\{z \mapsto \llbracket e_{0} \rrbracket^{\sharp} \rho\right\}\right) \\
& \text { in } \llbracket e_{1} \rrbracket^{\sharp}\left(\rho \oplus\left\{x_{1} \mapsto 1, x_{2} \mapsto b\right\}\right) \vee \text { let } b=\llbracket e_{1} \rrbracket_{0} \rrbracket^{\sharp}\left(\rho \oplus\left\{x_{1} \mapsto b, x_{2} \mapsto 1\right\}\right) \\
& \llbracket[] \rrbracket^{\sharp} \rho=1 \\
& \llbracket:: e \rrbracket^{\sharp} \rho=\llbracket e \rrbracket^{\sharp} \rho \\
& \llbracket\left(e_{1}, e_{2}\right) \rrbracket^{\sharp} \rho=\llbracket e_{1} \rrbracket^{\sharp} \rho \wedge \llbracket e_{2} \rrbracket^{\sharp} \rho
\end{aligned}
\end{aligned}
$$

## Discussion:

- The rules for constructor applications have changed.
- Also the treatment of match now involves the components $z$ and $x_{1}, x_{2}$.
- Again, we check the approach for the function app.


## Example:

Abstract interpretation yields the system of equations:

$$
\begin{aligned}
\llbracket \mathrm{app} \rrbracket^{\sharp} b_{1} b_{2} & =b_{1} \wedge b_{2} \vee b_{1} \wedge \llbracket \mathrm{app} \rrbracket^{\sharp} 1 b_{2} \vee 1 \wedge \llbracket \mathrm{app} \rrbracket^{\sharp} b_{1} b_{2} \\
& =b_{1} \wedge b_{2} \vee b_{1} \wedge \llbracket \mathrm{app} \rrbracket^{\sharp} 1 b_{2} \vee \llbracket \mathrm{app} \rrbracket^{\sharp} b_{1} b_{2}
\end{aligned}
$$

This results in the following fixpoint iteration:

$$
\begin{array}{|l||l|}
\hline 0 & \text { fun } x \rightarrow \text { fun } y \rightarrow 0 \\
1 & \text { fun } x \rightarrow \mathbf{f u n} y \rightarrow x \wedge y \\
2 & \text { fun } x \rightarrow \mathbf{f u n} y \rightarrow x \wedge y \\
\hline
\end{array}
$$

We deduce that both arguments are definitely totally required if the result is totally required :-)

## Warning:

Whether or not the result is totally required, depends on the context of the function call!

In such a context, a specialized function may be called ...

$$
\left.\begin{array}{rl}
\text { app\# }=\text { fun } x \rightarrow \text { fun } y \rightarrow & \text { let } \# x^{\prime}=x \text { and } \# y^{\prime}=y \text { in } \\
& \text { match } x \text { with }[] \rightarrow y^{\prime}
\end{array}\right\} \begin{gathered}
\mid:: z \rightarrow \text { match } z \text { with }(x, x s) \rightarrow \\
\text { let } \# r=::(x, \text { app\# } x s y) \\
\text { in } r
\end{gathered}
$$

## Discussion:

- Both strictness analyses employ the same complete lattice.
- Results and application, though, are quite different :-)
- Thereby, we use the following description relations:

$$
\begin{array}{lll}
\text { Top Strictness } & : & \perp \Delta 0 \\
\text { Total Strictness } & : & z \Delta 0 \text { if } \perp \text { occurs in } z .
\end{array}
$$

- Both analyses can also be combined to an a joint analysis ...


## Combined Strictness Analysis

- We use the complete lattice:

$$
\mathbb{T}=\{0 \sqsubset 1 \sqsubset 2\}
$$

- The description relation is given by:

$$
\perp \Delta 0 \quad z \Delta 1(z \text { contains } \perp) \quad z \Delta 2(z \text { value })
$$

- The lattice is more informative, the functions, though, are no longer as efficiently representable, e.g., through Boolean expressions
- We require the auxiliary functions:

$$
(i \sqsubseteq x) ; y= \begin{cases}y & \text { if } i \sqsubseteq x \\ 0 & \text { otherwise }\end{cases}
$$

## The Combined Evaluation Function:

$\llbracket$ match $e_{0}$ with []$\rightarrow e_{1} \mid:: z \rightarrow e_{2} \rrbracket^{\sharp} \rho=$
$\left(2 \sqsubseteq \llbracket e_{0} \rrbracket^{\sharp} \rho\right) ; \llbracket e_{1} \rrbracket^{\sharp} \rho \sqcup\left(1 \sqsubseteq \llbracket e_{0} \rrbracket^{\sharp} \rho\right) ; \llbracket e_{2} \rrbracket^{\sharp}\left(\rho \oplus\left\{z \mapsto \llbracket e_{0} \rrbracket^{\sharp} \rho\right\}\right)$
$\llbracket$ match $e_{0}$ with $\left(x_{1}, x_{2}\right) \rightarrow e_{1} \rrbracket^{\sharp} \rho \quad=$ let $b=\llbracket e_{0} \rrbracket^{\sharp} \rho$

$$
\text { in }\left(1 \sqsubseteq \llbracket e_{0} \rrbracket^{\sharp} \rho\right) ;\left(\llbracket e_{1} \rrbracket^{\sharp}\left(\rho \oplus\left\{x_{1} \mapsto 2, x_{2} \mapsto b\right\}\right)\right.
$$

$$
\left.\sqcup \llbracket e_{1} \rrbracket^{\sharp}\left(\rho \oplus\left\{x_{1} \mapsto b, x_{2} \mapsto 2\right\}\right)\right)
$$

$\llbracket[] \rrbracket^{\sharp} \rho$
$\llbracket:: e \rrbracket^{\sharp} \rho$
$\llbracket\left(e_{1}, e_{2}\right) \rrbracket^{\sharp} \rho$

$$
\begin{aligned}
& =2 \\
& =1 \sqcup \llbracket \llbracket \rrbracket^{\sharp} \rho \\
& =1 \sqcup\left(\llbracket e_{1} \rrbracket^{\sharp} \rho \sqcap \llbracket e_{2} \rrbracket^{\sharp} \rho\right)
\end{aligned}
$$

## Example:

For our beloved function app, we obtain:

$$
\begin{aligned}
\llbracket \mathrm{app} \rrbracket^{\sharp} d_{1} d_{2}= & \left(2 \sqsubseteq d_{1}\right) ; d_{2} \sqcup \\
& \left(1 \sqsubseteq d_{1}\right) ;\left(1 \sqcup \llbracket \mathrm{app} \rrbracket^{\sharp} d_{1} d_{2} \sqcup d_{1} \sqcap \llbracket \mathrm{app} \rrbracket^{\sharp} 2 d_{2}\right) \\
= & \left(2 \sqsubseteq d_{1}\right) ; d_{2} \sqcup \\
& \left(1 \sqsubseteq d_{1}\right) ; 1 \sqcup \\
& \left(1 \sqsubseteq d_{1}\right) ; \llbracket \mathrm{app} \rrbracket^{\sharp} d_{1} d_{2} \sqcup \\
& d_{1} \sqcap \llbracket \mathrm{app} \rrbracket^{\sharp} 2 d_{2}
\end{aligned}
$$

this results in the fixpoint computation:

| 0 | fun $x \rightarrow$ fun $y \rightarrow 0$ |
| :--- | :--- |
| 1 | fun $x \rightarrow \mathbf{f u n} y \rightarrow(2 \sqsubseteq x) ; y \sqcup(1 \sqsubseteq x) ; 1$ |
| 2 | fun $x \rightarrow \mathbf{f u n} y \rightarrow(2 \sqsubseteq x) ; y \sqcup(1 \sqsubseteq x) ; 1$ |

We conclude

- that both arguments are totally required if the result is totally required; and
- that the root of the first argument is required if the root of the result is required :-)


## Remark:

The analysis can be easily generalized such that it guarantees evaluation up to a depth $d$;-)

## Further Directions:

- Our Approach is also applicable to other data structures.
- In principle, also higher-order (monomorphic) functions can be analyzed in this way :-)
- Then, however, we require higher-order abstract functions of which there are many
- Such functions therefore are approximated by:

$$
\text { fun } x_{1} \rightarrow \ldots \text { fun } x_{r} \rightarrow \top
$$

- For some known higher-order functions such as map, foldl, loop,.. this approach then should be improved :-))


## 5 Optimization of Logic Programs

We only consider the mini language PuP ("Pure Prolog"). In particular, we do not consider:

- arithmetic;
- the cut-operator.
- Self-modification by means of assert and retract.


## Example:

$$
\begin{array}{ll}
\operatorname{bigger}(X, Y) & \leftarrow X=\text { elephant, } Y=\text { horse } \\
\operatorname{bigger}(X, Y) & \leftarrow X=\text { horse, } Y=\text { donkey } \\
\operatorname{bigger}(X, Y) & \leftarrow X=\text { donkey, } Y=\text { dog } \\
\operatorname{bigger}(X, Y) & \leftarrow X=\text { donkey, } Y=\text { monkey } \\
\text { is_bigger }(X, Y) & \leftarrow \operatorname{bigger}(X, Y) \\
\text { is_bigger }(X, Y) & \leftarrow \operatorname{bigger}(X, Z) \text {,is_bigger }(Z, Y) \\
& \leftarrow \text { is_bigger }(\text { elephant,dog })
\end{array}
$$

A more realistic Example:

$$
\begin{aligned}
\operatorname{app}(X, Y, Z) & \leftarrow X=[], Y=Z \\
\operatorname{app}(X, Y, Z) & \leftarrow X=\left[H \mid X^{\prime}\right], Z=\left[H \mid Z^{\prime}\right], \operatorname{app}\left(X^{\prime}, Y, Z^{\prime}\right) \\
& \leftarrow \operatorname{app}(X,[Y, c],[a, b, Z])
\end{aligned}
$$

