
A more realistic Example:

app(X,Y, Z) ← X = [], Y = Z

app(X,Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′,Y, Z′)

← app(X, [Y, c], [a, b, Z])

Remark:

[] === the atom empty list

[H|Z] === binary constructor application

[a, b, Z] === Abbreviation for: [a|[b|[Z|[]]]]

872

Accordingly, a program p is constructed as follows:

t ::= a | X | _ | f (t1, . . . , tn)

g ::= p(t1, . . . , tk) | X = t

c ::= p(X1, . . . ,Xk)← g1, . . . , gr

q ::= ← g1, . . . , gr

p ::= c1 . . . cmq

• A term t either is an atom, a (possibly anonymous) variable or

a constructor application.

• A goal g either is a literal, i.e., a predicate call, or a unification.

• A clause c consists of a head p(X1, . . . ,Xk) together with body

consisting of a sequence of goals.

• A program consists of a sequence of clauses together with a

sequence of goals as query.

873

Procedural View of PuP-Programs:

literal === procedure call

predicate === procedure

definition === body

term === value

unification === basic computation step

binding of variables === side effect

Warning: Predicate calls ...

• do not return results!

• modify the caller solely through side effects :-)

• may fail. Then, the following definition is tried ==⇒

backtracking

874

Inefficiencies:

Backtracking: • The matching alternative must be searched

for ==⇒ Indexing

• Since a successful call may still fail later, the stack can only

be cleared if there are no pending alternatives.

Unification: • The translation possibly must switch between

build and check several times.

• In case of unification with a variable, an Occur Check

must be performed.

Type Checking: • Since Prolog is untyped, it must be

checked at run-time whether or not a term is of the

desired form.

• Otherwise, ugly errors could show up.

875

Some Optimizations:

• Replacing last calls with jumps;

• Compile-time type inference;

• Identification of deterministic predicates ...

Example:

app(X,Y, Z) ← X = [], Y = Z

app(X,Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′,Y, Z′)

← app([a, b], [Y, c], Z)

876

Observation:

• In PuP, functions must be simulated through predicates.

• These then have designated input- and output parameters.

• Input parameters are those which are instantiated with a

variable-free term whenever the predicate is called.

These are also called ground.

• In the example, the first parameter of app is an input

parameter.

• Unification with such a parameter can be implemented as

pattern matching !

• Then we see that app in fact is deterministic !!!

877

5.1 Groundness Analysis

A variable X is called ground w.r.t. a program execution π starting

program entry and entering a program point v, if X is bound to a

variable-free term.

Goal:

• Find all variables which are ground whenever a particular

program point is reached !

• Find all arguments of a predicate which are ground whenever

the predicate is called !

878

Idea:

• Describe groundness by values from B:

1 == variable-free term;

0 == term which contains variables.

• A set of variable assignments is described by Boolean

functions :-)

X ↔ Y == X is ground iff Y is ground.

X ∧Y == X and Y are ground.

879

Idea (cont.):

• The constant function 0 denotes an unreachable program

point.

• Occurring sets of variable assignments are closed under

substitution.

This means that for every occurring functionφ 6= 0,

φ(1, . . . , 1) = 1

These functions are called positive.

• The set of all positive functions is called Pos.

Ordering: φ1 ⊑ φ2 if φ1 ⇒ φ2.

• In particular, the least element is 0 :-)

880

Example:

X ↔ Y

X ∨Y X → YY → X

1

X Y

0

X ∧Y

01, 1110, 11

11

00, 10, 11 00, 01, 1101, 10, 11

00, 11

00, 01, 10, 11

881

Remarks:

• Not all positive functions are monotonic !!!

• For k variables, there are 22
k−1 + 1 many functions.

• The height of the complete lattice is 2k.

• We construct an interprocedural analysis which for every

predicate p determines a (monotonic) transformation

[[p]]♯ : Pos→ Pos

• For every clause, p(X1, . . . ,Xk)⇐ g1, . . . , gn we obtain the

constraint:

[[p]]♯ψ ⊒ ∃Xk+1, . . . ,Xm. [[gn]]
♯ (. . . ([[g1]]

♯ψ) . . .)

// m number of clause variables

882

Abstract Unification:

[[X = t]]♯ψ = ψ ∧ (X ↔ X1 ∧ . . . ∧ Xr)

if Vars(t) = {X1, . . . ,Xr}.

Abstract Literal:

[[q(s1, . . . , sk)]]♯ψ = combine
♯
s1 ,...,sk(ψ, [[q]]

♯ (enter
♯
s1 ,...,skψ))

// analogous to procedure call !!

883

Thereby:

enter
♯
s1 ,...,skψ = ren (∃X1, . . . ,Xm. [[X̄1 = s1, . . . , X̄k = sk]]♯ψ)

combine
♯
s1 ,...,sk(ψ,ψ1) = ∃ X̄1, . . . , X̄r. ψ ∧ [[X̄1 = s1, . . . , X̄k = sk]]♯(renψ1)

where

∃X.φ = φ[0/X]∨φ[1/X]

renφ = φ[X1/X̄1, . . . ,Xk/X̄k]

renφ = φ[X̄1/X1, . . . , X̄r/Xr]

884

Example:

app(X,Y, Z) ← X = [], Y = Z

app(X,Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′,Y, Z′)

Then

[[app]]♯(X) ⊒ X ∧ (Y ↔ Z)

[[app]]♯(X) ⊒ let ψ = X ∧ H ∧ X′ ∧ (Z↔ Z′)

in ∃ H,X′, Z′. combine♯
... (ψ, [[app]]♯(enter♯...(ψ)))

where for ψ = X ∧ H ∧ X′ ∧ (Z↔ Z′):

enter♯...(ψ) = X

combine♯
...(ψ,X ∧ (Y ↔ Z)) = (X ∧ H ∧ X′ ∧ (Z↔ Z′) ∧ (Y ↔ Z′)

885

