A more realistic Example:

$$
\begin{aligned}
\operatorname{app}(X, Y, Z) & \leftarrow X=[], Y=Z \\
\operatorname{app}(X, Y, Z) & \leftarrow X=\left[H \mid X^{\prime}\right], Z=\left[H \mid Z^{\prime}\right], \operatorname{app}\left(X^{\prime}, Y, Z^{\prime}\right) \\
& \leftarrow \operatorname{app}(X,[Y, c],[a, b, Z])
\end{aligned}
$$

Remark:
[] $\overline{=}$ the atom empty list
$[H \mid Z]=$ binary constructor application
$[a, b, Z]=$ Abbreviation for: $[a \mid[b \mid[Z \mid[]]]]$

Accordingly, a program p is constructed as follows:

$$
\begin{aligned}
t & ::=a|X| _\mid f\left(t_{1}, \ldots, t_{n}\right) \\
g & ::=p\left(t_{1}, \ldots, t_{k}\right) \mid X=t \\
c & ::=p\left(X_{1}, \ldots, X_{k}\right) \leftarrow g_{1}, \ldots, g_{r} \\
q & ::=\leftarrow g_{1}, \ldots, g_{r} \\
p & ::=c_{1} \ldots c_{m} q
\end{aligned}
$$

- A term t either is an atom, a (possibly anonymous) variable or a constructor application.
- A goal g either is a literal, i.e., a predicate call, or a unification.
- A clause c consists of a head $p\left(X_{1}, \ldots, X_{k}\right)$ together with body consisting of a sequence of goals.
- A program consists of a sequence of clauses together with a sequence of goals as query.

Procedural View of PuP-Programs:

literal	$=$ procedure call
predicate	$=$
procedure	
definition	$=$ body
term	$=$ value
unification	$=$ basic computation step
binding of variables	$=$
side effect	

Warning: Predicate calls ...

- do not return results!
- modify the caller solely through side effects :-)
- may fail. Then, the following definition is tried backtracking

Inefficiencies:

Backtracking: - The matching alternative must be searched for \Longrightarrow Indexing

- Since a successful call may still fail later, the stack can only be cleared if there are no pending alternatives.

Unification: - The translation possibly must switch between build and check several times.

- In case of unification with a variable, an Occur Check must be performed.

Type Checking: - Since Prolog is untyped, it must be checked at run-time whether or not a term is of the desired form.

- Otherwise, ugly errors could show up.

Some Optimizations:

- Replacing last calls with jumps;
- Compile-time type inference;
- Identification of deterministic predicates ...

Example:

$$
\begin{aligned}
\operatorname{app}(X, Y, Z) & \leftarrow X=[], Y=Z \\
\operatorname{app}(X, Y, Z) & \leftarrow X=\left[H \mid X^{\prime}\right], Z=\left[H \mid Z^{\prime}\right], \operatorname{app}\left(X^{\prime}, Y, Z^{\prime}\right) \\
& \leftarrow \operatorname{app}([a, b],[Y, c], Z)
\end{aligned}
$$

Observation:

- In PuP, functions must be simulated through predicates.
- These then have designated input- and output parameters.
- Input parameters are those which are instantiated with a variable-free term whenever the predicate is called.
These are also called ground.
- In the example, the first parameter of app is an input parameter.
- Unification with such a parameter can be implemented as pattern matching!
- Then we see that app in fact is deterministic !!!

5.1 Groundness Analysis

A variable X is called ground w.r.t. a program execution π starting program entry and entering a program point v, if X is bound to a variable-free term.

Goal:

- Find all variables which are ground whenever a particular program point is reached!
- Find all arguments of a predicate which are ground whenever the predicate is called!

Idea:

- Describe groundness by values from \mathbb{B} :
$1=$ variable-free term;
$0=$ term which contains variables.
- A set of variable assignments is described by Boolean functions :-)
$X \leftrightarrow Y=X$ is ground iff Y is ground.
$X \wedge Y=X$ and Y are ground.

Idea (cont.):

- The constant function 0 denotes an unreachable program point.
- Occurring sets of variable assignments are closed under substitution.

This means that for every occurring function $\phi \neq 0$,

$$
\phi(1, \ldots, 1)=1
$$

These functions are called positive.

- The set of all positive functions is called Pos.

Ordering: $\quad \phi_{1} \sqsubseteq \phi_{2} \quad$ if $\quad \phi_{1} \Rightarrow \phi_{2}$.

- In particular, the least element is 0 :-)

Example:

Remarks:

- Not all positive functions are monotonic !!!
- For k variables, there are $2^{2^{k}-1}+1$ many functions.
- The height of the complete lattice is 2^{k}.
- We construct an interprocedural analysis which for every predicate p determines a (monotonic) transformation

$$
\llbracket p \rrbracket^{\sharp}: \operatorname{Pos} \rightarrow \mathrm{Pos}
$$

- For every clause, $p\left(X_{1}, \ldots, X_{k}\right) \Leftarrow g_{1}, \ldots, g_{n}$ we obtain the constraint:

$$
\llbracket p \rrbracket^{\sharp} \psi \sqsupset \exists X_{k+1}, \ldots, X_{m} . \llbracket g_{n} \rrbracket^{\sharp}\left(\ldots\left(\llbracket g_{1} \rrbracket^{\sharp} \psi\right) \ldots\right)
$$

// m number of clause variables

Abstract Unification:

$$
\begin{aligned}
\llbracket X=t \rrbracket^{\sharp} \psi & =\psi \wedge\left(X \leftrightarrow X_{1} \wedge \ldots \wedge X_{r}\right) \\
\text { if } & \operatorname{Vars}(t)=\left\{X_{1}, \ldots, X_{r}\right\} .
\end{aligned}
$$

Abstract Literal:

$$
\llbracket q\left(s_{1}, \ldots, s_{k}\right) \rrbracket^{\sharp} \psi=\quad \text { combine }{\stackrel{s}{s_{1}}, \ldots, s_{k}}_{\sharp}\left(\psi, \llbracket q \rrbracket^{\sharp}\left(\text { enter } s_{s_{1}, \ldots, s_{k}}^{\sharp} \psi\right)\right)
$$

// analogous to procedure call !!

Thereby:

$$
\begin{aligned}
& \operatorname{enter}_{s_{1}, \ldots, s_{k}}^{\sharp} \psi= \operatorname{ren}\left(\exists X_{1}, \ldots, X_{m} \cdot \llbracket \bar{X}_{1}=s_{1}, \ldots, \bar{X}_{k}=s_{k} \rrbracket^{\sharp} \psi\right) \\
& \text { combine }_{s_{1}{ }^{\sharp}, \ldots, s_{k}}\left(\psi, \psi_{1}\right)= \exists \bar{X}_{1}, \ldots, \bar{X}_{r} . \psi \wedge \llbracket \bar{X}_{1}=s_{1}, \ldots, \bar{X}_{k}=s_{k} \rrbracket^{\sharp}\left(\overline{\operatorname{ren}} \psi_{1}\right) \\
& \text { where } \\
& \exists X . \phi= \phi[0 / X] \vee \phi[1 / X] \\
& \operatorname{ren} \phi= \phi\left[X_{1} / \bar{X}_{1}, \ldots, X_{k} / \bar{X}_{k}\right] \\
& \overline{\operatorname{ren}} \phi=\phi\left[\bar{X}_{1} / X_{1}, \ldots, \bar{X}_{r} / X_{r}\right]
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \operatorname{app}(X, Y, Z) \leftarrow X=[], Y=Z \\
& \operatorname{app}(X, Y, Z) \leftarrow X=\left[H \mid X^{\prime}\right], Z=\left[H \mid Z^{\prime}\right], \operatorname{app}\left(X^{\prime}, Y, Z^{\prime}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\llbracket a p p \rrbracket^{\sharp}(X) \sqsupseteq & X \wedge(Y \leftrightarrow Z) \\
\llbracket a p p \rrbracket^{\sharp}(X) \sqsupseteq & \text { let } \psi=X \wedge H \wedge X^{\prime} \wedge\left(Z \leftrightarrow Z^{\prime}\right) \\
& \text { in } \exists H, X^{\prime}, Z^{\prime} . \text { combine } \ldots\left(\psi, \llbracket a p p \rrbracket^{\sharp}(\text { enter } \ldots(\psi))\right)
\end{aligned}
$$

where for $\quad \psi=X \wedge H \wedge X^{\prime} \wedge\left(Z \leftrightarrow Z^{\prime}\right)$:

$$
\begin{array}{ll}
\operatorname{enter}_{\ldots}^{\sharp}(\psi) & =X \\
\operatorname{combine}_{\ldots . .}^{\sharp}(\psi, X \wedge(Y \leftrightarrow Z)) & =\left(X \wedge H \wedge X^{\prime} \wedge\left(Z \leftrightarrow Z^{\prime}\right) \wedge\left(Y \leftrightarrow Z^{\prime}\right)\right.
\end{array}
$$

