A more realistic Example:

app(X,Y,Z) Y
app(X, Y, Z) «— X = [H\X’] = [H|Z'], app(X', Y, Z")
N app(X,[] [El b, Z])

Remark:
]
H|Z]

a,b, 7]

the atom empty list
binary constructor application
Abbreviation for: [a||b||Z]|]]]]

872

Accordingly, a program p is constructed as follows:

too= a| X |_| f(t,..., tn)

g u= p(t,.... k)| X=t

C p(X1, oo, X)) —81,---, 8
qg — 91,0, 8

p = C1...Cm{

e A term ¢ either is an atom, a (possibly anonymous) variable or
a constructor application.

e A goal g either is a literal, i.e., a predicate call, or a unification.

e A clause c consists of a head p(Xj, ..., Xi) together with body
consisting of a sequence of goals.

e A program consists of a sequence of clauses together with a
sequence of goals as query.

873

Procedural View of PuP-Programs:

literal —— procedure call
predicate —— procedure

definition —— body

term —— value

unification —— basic computation step

binding of variables side effect

Warning: Predicate calls ...

e do not return results!
e modify the caller solely through side effects :-)

e may fail. Then, the following definition is tried —
backtracking

874

Inefficiencies:

Backtracking: e The matching alternative must be searched
for —— Indexing

e Since a successful call may still fail later, the stack can only
be cleared if there are no pending alternatives.

Unification: e The translation possibly must switch between
build and check several times.

e In case of unification with a variable, an Occur Check
must be performed.

Type Checking: e Since Prolog is untyped, it must be
checked at run-time whether or not a term is of the
desired form.

o Otherwise, ugly errors could show up.

875

Some Optimizations:
e Replacing last calls with jumps;

e Compile-time type inference;

e Identification of deterministic predicates ...

Example:

app(X,Y,Z2) «— X=][], Y=Z
app(X,Y,Z) «— X =[H|X'|, Z=[H|Z|, app(X', Y, Z’)
— app([a, b],[Y,c], Z)

876

Observation:

e In PuP, functions must be simulated through predicates.
e These then have designated input- and output parameters.

e Input parameters are those which are instantiated with a
variable-free term whenever the predicate is called.

These are also called ground.

e In the example, the first parameter of app is an input
parameter.

e Unification with such a parameter can be implemented as
pattern matching !

e Then we see that app in fact is deterministic !!!

877

51 Groundness Analysis

A variable X is called ground w.r.t. a program execution 7 starting
program entry and entering a program point v, if X is bound to a
variable-free term.

Goal:

e Find all variables which are ground whenever a particular
program point is reached !

e Find all arguments of a predicate which are ground whenever
the predicate is called !

878

Idea:

Describe groundness by values from B:

1 — variable-free term;
0 = term which contains variables.
A set of variable assignments is described by Boolean
functions :-)
XY —
XANY

X is ground iff Y is ground.

X and Y are ground.

879

Idea (cont.):

e The constant function 0 denotes an unreachable program
point.

e Occurring sets of variable assignments are closed under
substitution.

This means that for every occurring function ¢ # 0,

$(1,...,1) =1

These functions are called positive.

o The set of all positive functions is called Pos.
Ordering: ¢P1 & Py if P = O.

e In particular, the least elementis 0 :-)

880

Example:

00, 10, 11

X

10, 11

X

00, 01, 10, 11

1)

XVY

00,11

Xy

11

[XAy)
o)

881

01, 10,

00,01, 11

Xy

Y

01,11

Remarks:

e Not all positive functions are monotonic !!!
e For I variables, there are 2 ! + 1 many functions.
e The height of the complete lattice is 2".

e We construct an interprocedural analysis which for every
predicate p determines a (monotonic) transformation

[p]? : Pos — Pos

e Foreveryclause, p(Xi,...,Xx) < g1,...,9:» we obtain the
constraint:

PP 23 33Xk, X [l (- ([P) -)

// " m number of clause variables

882

Abstract Unification:

[X=t]y = yPA(X—=XiA...AX)
if Vars(t) ={Xy,..., X, }.

Abstract Literal:

[a(s1,...,s0)]fp = combinef, . (1, [q] (enterf, o))

// analogous to procedure call !!

883

Thereby:

entergl,...,skll)

combinef, .5, (, 1)

ren(ﬂXl,...,Xm. [[Xl = S1,+.,

EIXl Xr.ll)/\ [[Xl—Sl
where
= ¢|0/X]V ¢[1/X]

— (P[Xl/Xl/“ka/Xk]

884

Xi = si]*y)

Example:

app(X,Y,Z2) «— X=][], Y=Z
app(X,Y,Z) «— X =[H|X|, Z=[H|Z|, app(X', Y, Z’)

Then
[app]#(X) 3T XA (Y < Z)
[app]#(X) 3 letp =XAHAX' AN (Z — Z')

in 3H, X', Z'. combine? (1, [app]*(entert ()))

where for PV =XANHAX AN (Z <~ Z'):

enter” (1)) = X
combine’ (P, XA (Y < Z)) = (XAHAX'N(Z —ZYAN(Y < Z')

885

