
Example (Cont.):

Furthermore,

[[app]]♯(Z) ⊒ X ∧Y ∧ Z

[[app]]♯(Z) ⊒ let ψ = X ∧ H ∧ X′ ∧ Z ∧ Z′

in ∃ H,X′, Z′. combine♯
... (ψ, [[app]]♯(enter♯...(ψ)))

where for ψ = Z ∧ H ∧ Z′ ∧ (X ↔ X′):

enter♯...(ψ) = Z

combine♯
...(ψ,X ∧Y ∧ Z) = X ∧ H ∧ X′ ∧Y ∧ Z ∧ Z′

Fixpoint iteration therefore yields:

[[app]]♯ (X) = X ∧ (Y ↔ Z) [[app]]♯ (Z) = X ∧Y ∧ Z

886

Discussion:

• Exhaustive tabulation of the transformation [[app]]♯ is not

feasible.

• Therefore, we rely on demand-driven fixpoint iteration !

• The evaluation starts with the evaluation of the query g, i.e.,

with the evaluation of [[g]]♯ 1.

• The set of inspected fixpoint variables [[p]]♯ψ yields a

description of all possible calls :-))

• For an efficient representation of functions ψ ∈ Pos we

rely on binary decision diagrams (BDDs).

887

Background 6: Binary Decision Diagrams

Idea (1):

• Choose an ordering x1, . . . , xk on the arguments ...

• Represent the function f : B→ . . .→ B by [f]0 where:

[b]k = b

[f]i−1 = fun xi → if xi then [f 1]i

else [f 0]i

Example: f x1 x2 x3 = x1 ∧ (x2 ↔ x3)

888

... yields the tree:

x3x3 x3x3

x2x2

x1

889

Idea (2):

• Decision trees are exponentially large :-(

• Often, however, many sub-trees are isomorphic :-)

• Isomorphic sub-trees need to be represented only once ...

x2x2

x1

x3 x3 x3

890

Idea (3):

• Nodes whose test is irrelevant, can also be abandoned ...

x2

x1

x3 x3

891

Discussion:

• This representation of the Boolean function f is unique !

==⇒

Equality of functions is efficiently decidable !!

• For the representation to be useful, it should support the basic

operations: ∧,∨,¬,⇒, ∃ x j ...

[b1 ∧ b2]k = b1 ∧ b2

[f ∧ g]i−1 = fun xi → if xi then [f 1 ∧ g 1]i

else [f 0 ∧ g 0]i

// analogous for the remaining operators

892

[∃ x j. f]i−1 = fun xi → if xi then [∃ x j. f 1]i

else [∃ x j. f 0]i if i < j

[∃ x j. f] j−1 = [f 0 ∨ f 1] j

• Operations are executed bottom-up.

• Root nodes of already constructed sub-graphs are stored in a

unique-table

==⇒

Isomorphy can be tested in constant time !

• The operations thus are polynomial in the size of the input

BDDs :-)

893

Discussion:

• Originally, BDDs have been developped for circuit verification.

• Today, they are also applied to the verification of software ...

• A system state is encoded by a sequence of bits.

• A BDD then describes the set of all reachable system states.

• Warning: Repeated application of Boolean operations may

increase the size dramatically !

• The variable ordering may have a dramatic impact ...

894

Example: (x1 ↔ x2) ∧ (x3 ↔ x4)

x1

x2

x3

x2 x2 x2

x3

x1

x3

x2x2

x4x4 x4 x4

895

Discussion (2):

• In general, consider the function:

(x1 ↔ x2) ∧ . . . ∧ (x2n−1 ↔ x2n)

W.r.t. the variable ordering:

x1 < x2 < . . . < x2n

the BDD has 3n internal nodes.

W.r.t. the variable ordering:

x1 < x3 < . . . < x2n−1 < x2 < x4 < . . . < x2n

the BDD has more than 2n internal nodes !!

• A similar result holds for the implementation of Addition

through BDDs.

896

Discussion (3):

• Not all Boolean functions have small BDDs :-(

• Difficult functions:

2 multiplication;

2 indirect addressing ...

==⇒ data-intensive programs cannot be analyzed in this way

:-(

897

Perspectives: Further Properties of Programs

Freeness: Is Xi possibly/always unbound ?

==⇒

If Xi is always unbound, no indexing for Xi is required :-)

If Xi is never unbound, indexing for Xi is complete :-)

Pair Sharing: Are Xi,X j possibly bound to terms ti, t j with

Vars(ti) ∩Vars(t j) 6= ∅ ?

==⇒

Literals without sharing can be executed in parallel :-)

Remark:

Both analyses may profit from Groundness !

898

5.2 Types for Prolog

Example:

nat(X) ← X = 0

nat(X) ← X = s(Y), nat(Y)

nat_list(X) ← X = []

nat_list(X) ← X = [H|T], nat(H), nat_list(T)

899

Discussion

• In Prolog, a type is a set of ground terms with a simple

description.

• There is no common agreement what simple means :-)

• One possibility are (non-deterministic) finite tree automata or

normal Horn clauses:

nat_list([H|T]) ← nat(H), nat_list(T) normal

bin(node(T, T)) ← bin(T) nicht normal

tree(node(T1, T2)) ← tree(T1), tree(T2) normal

900

Comparison:

Normal clauses Tree automaton

unary predicate state

normal clause transition

constructor in the head input symbol

body pre-condition

General Form:

p(a(X1, . . . ,Xk)) ← p1(X1), . . . , pk(Xk)

p(X) ←

p(b) ←

901

Properties:

• Types then are in fact regular tree languages ;-)

• Types are closed under intersection:

〈p, q〉(a(X1, . . . ,Xk)) ← 〈p1, q1〉(X1), . . . , 〈pk, qk〉(Xk) if

p(a(X1, . . . ,Xk)) ← p1(X1), . . . , pk(Xk) and

q(a(X1, . . . ,Xk)) ← q1(X1), . . . , qk(Xk)

• Types are also closed under union :-)

• Queries p(X) and p(t) can be decided in polynomial time

but:

• ... only in presence of tabulation !

• Or the program is topdown deterministic ...

902

Example: Topdown vs. Bottom-up

p(a(X1,X2)) ← p1(X1), p2(X2)

p(a(X1,X2)) ← p2(X1), p1(X2)

p1(b) ←

p2(c) ←

... is bottom-up, but not topdown deterministic.

There is no topdown deterministic program for this type !

==⇒

Topdown deterministic types are closed under intersection, but not

under union !!!

903

For a set T of terms, we define the set Π(T) of paths in

terms from T:

Π(T) =
⋃
{Π(t) | t ∈ T}

Π(b) = {b}

Π(a(t1, . . . , tk)) = {a jw | w ∈ Π(t j)} (k > 0)

// for new unary constructors a j

Example

T = {a(b, c), a(c, b)}

Π(T) = {a1b, a2c, a1c, a2b}

904

Vice versa from a set P of paths, a set Π−(P) of terms can be

recovered:

Π−(P) = {t | Π(t) ⊆ P}

Example (Cont.):

P = {a1b, a2c, a1c, a2b}

Π−(P) = {a(b, b), a(b, c), a(c, b), a(c, c)}

The set has become larger !!

905

Theorem:

Assume that T is a regular set of terms. Then:

• Π(T) is regular :-)

• T ⊆ Π−(Π(T)) :-)

• T = Π−(Π(T)) iff T is topdown deterministic :-)

• Π−(Π(T)) is the smallest superset of T which is topdown

deterministic. :-)

Consequence:

If we are interested in topdown deterministic types, it suffices to

determine the set of paths in terms !!!

906

Example (Cont.):

add(X,Y, Z) ← X = 0, nat(Y),Y = Z

add(X,Y, Z) ← nat(X),X = s(X′), Z = s(Z′), add(X′,Y, Z′)

mult(X,Y, Z) ← X = 0, nat(Y), Z = 0

mult(X,Y, Z) ← nat(X),X = s(X′),mult(X′,Y, Z′), add(Z′,Y, Z)

Question:

Which run-time checks are necessary?

907

Idea:

• Approximate the semantics of predicates by means of

topdown-deterministic regular tree languages !

• Alternatively: Approximate the set of paths in the

semantics of predicates by regular word languages !

Idea:

• All predicates p/k, k > 0, are split into predicates

p1/1, . . . , pk/1.

908

Semantics:

Let C denote a set of clauses.

The set [[p]]C is the set of tuples of ground terms (s1, . . . , sk), for

which p(s1, . . . , sk) is provable :-)

[[p]]C (p predicate) thus is the smallest collection of sets of tuples

for which:

σ(t) ∈ [[p]]C when ever ∀ i. σ(ti) ∈ [[pi]]C

for clauses p(t)← p1(t1), . . . , pn(tn) ∈ C and ground

substitutions σ .

909

