Example (Cont.):

Furthermore,

$$
\begin{aligned}
& \llbracket a p p \rrbracket^{\sharp}(Z) \sqsupseteq X \wedge Y \wedge Z \\
& \llbracket a \mathrm{pp} \rrbracket^{\sharp}(Z) \sqsupseteq \text { let } \psi=X \wedge H \wedge X^{\prime} \wedge Z \wedge Z^{\prime} \\
& \text { in } \exists H, X^{\prime}, Z^{\prime} \text {. combine }{ }^{\sharp}\left(\psi, \llbracket a p p \rrbracket^{\sharp}\left(\operatorname{enter}^{\sharp}(\psi)\right)\right)
\end{aligned}
$$

where for $\quad \psi=Z \wedge H \wedge Z^{\prime} \wedge\left(X \leftrightarrow X^{\prime}\right)$:

$$
\begin{array}{ll}
\operatorname{enter}_{\ldots}^{\sharp}(\psi) & =Z \\
\operatorname{combine~}_{\ldots}^{\sharp} . . \\
\text { c } & =X, Y \wedge Z) \\
=X \wedge H \wedge X^{\prime} \wedge Y \wedge Z \wedge Z^{\prime}
\end{array}
$$

Fixpoint iteration therefore yields:

$$
\llbracket \mathrm{app} \rrbracket^{\sharp}(X)=X \wedge(Y \leftrightarrow Z) \quad \llbracket \mathrm{app} \rrbracket^{\sharp}(Z)=X \wedge Y \wedge Z
$$

Discussion:

- Exhaustive tabulation of the transformation $\llbracket a p p \rrbracket^{\sharp}$ is not feasible.
- Therefore, we rely on demand-driven fixpoint iteration !
- The evaluation starts with the evaluation of the query g,i.e., with the evaluation of $\llbracket g \rrbracket^{\sharp} 1$.
- The set of inspected fixpoint variables $\quad \llbracket p \rrbracket^{\sharp} \psi$ yields a description of all possible calls :-))
- For an efficient representation of functions $\psi \in \operatorname{Pos}$ we rely on binary decision diagrams (BDDs).

Background 6: Binary Decision Diagrams

Idea (1):

- Choose an ordering x_{1}, \ldots, x_{k} on the arguments ...
- Represent the function $f: \mathbb{B} \rightarrow \ldots \rightarrow \mathbb{B}$ by $[f]_{0}$ where:

$$
\begin{aligned}
{[b]_{k} } & =b \\
{[f]_{i-1} } & =\text { fun } x_{i} \rightarrow \text { if } x_{i} \text { then }[f 1]_{i} \\
& \quad \text { else }[f 0]_{i}
\end{aligned}
$$

Example: $\quad f x_{1} x_{2} x_{3}=x_{1} \wedge\left(x_{2} \leftrightarrow x_{3}\right)$
... yields the tree:

Idea (2):

- Decision trees are exponentially large
- Often, however, many sub-trees are isomorphic :-)
- Isomorphic sub-trees need to be represented only once ...

Idea (3):

- Nodes whose test is irrelevant, can also be abandoned ...

Discussion:

- This representation of the Boolean function f is unique !
\qquad
Equality of functions is efficiently decidable !!
- For the representation to be useful, it should support the basic operations: $\wedge, \vee, \neg, \Rightarrow, \exists x_{j} \ldots$

$$
\begin{aligned}
{\left[b_{1} \wedge b_{2}\right]_{k}=} & b_{1} \wedge b_{2} \\
{[f \wedge g]_{i-1}=} & \text { fun } x_{i} \rightarrow \text { if } x_{i} \text { then }[f 1 \wedge g 1]_{i} \\
& \text { else }[f 0 \wedge g 0]_{i}
\end{aligned}
$$

analogous for the remaining operators

$$
\begin{aligned}
{\left[\exists x_{j} \cdot f\right]_{i-1} } & =\text { fun } x_{i} \rightarrow \text { if } x_{i} \text { then }\left[\exists x_{j} . f 1\right]_{i} \\
\quad \text { else }\left[\exists x_{j} . f 0\right]_{i} & \text { if } i<j \\
{\left[\exists x_{j} . f\right]_{j-1} } & =[f 0 \vee f 1]_{j}
\end{aligned}
$$

- Operations are executed bottom-up.
- Root nodes of already constructed sub-graphs are stored in a unique-table

Isomorphy can be tested in constant time !

- The operations thus are polynomial in the size of the input BDDs :-)

Discussion:

- Originally, BDDs have been developped for circuit verification.
- Today, they are also applied to the verification of software ...
- A system state is encoded by a sequence of bits.
- A BDD then describes the set of all reachable system states.
- Warning: Repeated application of Boolean operations may increase the size dramatically !
- The variable ordering may have a dramatic impact ...

Example: $\quad\left(x_{1} \leftrightarrow x_{2}\right) \wedge\left(x_{3} \leftrightarrow x_{4}\right)$

Discussion (2):

- In general, consider the function:

$$
\left(x_{1} \leftrightarrow x_{2}\right) \wedge \ldots \wedge\left(x_{2 n-1} \leftrightarrow x_{2 n}\right)
$$

W.r.t. the variable ordering:

$$
x_{1}<x_{2}<\ldots<x_{2 n}
$$

the BDD has $3 n$ internal nodes.
W.r.t. the variable ordering:

$$
x_{1}<x_{3}<\ldots<x_{2 n-1}<x_{2}<x_{4}<\ldots<x_{2 n}
$$

the BDD has more than 2^{n} internal nodes !!

- A similar result holds for the implementation of Addition through BDDs.

Discussion (3):

- Not all Boolean functions have small BDDs
- Difficult functions:
\square multiplication;
\square indirect addressing ...
\Longrightarrow data-intensive programs cannot be analyzed in this way :-(

Perspectives: Further Properties of Programs

Freeness: Is X_{i} possibly/always unbound ?
\qquad
If X_{i} is always unbound, no indexing for X_{i} is required :-) If X_{i} is never unbound, indexing for X_{i} is complete :-)

Pair Sharing: Are X_{i}, X_{j} possibly bound to terms t_{i}, t_{j} with

$$
\operatorname{Vars}\left(t_{i}\right) \cap \operatorname{Vars}\left(t_{j}\right) \neq \emptyset \quad ?
$$

Literals without sharing can be executed in parallel :-)

Remark:

Both analyses may profit from Groundness !

5.2 Types for Prolog

Example:

$$
\begin{array}{ll}
\operatorname{nat}(X) & \leftarrow X=0 \\
\operatorname{nat}(X) & \leftarrow X=s(Y), \operatorname{nat}(Y) \\
\text { nat_list }(X) & \leftarrow X=[] \\
\text { nat_list }(X) & \leftarrow X=[H \mid T], \operatorname{nat}(H), \text { nat_list(}(T)
\end{array}
$$

Discussion

- In Prolog, a type is a set of ground terms with a simple description.
- There is no common agreement what simple means :-)
- One possibility are (non-deterministic) finite tree automata or normal Horn clauses:

$$
\begin{array}{lll}
\text { nat_list }([H \mid T]) & \leftarrow \operatorname{nat}(H), \text { nat_list }(T) & \text { normal } \\
\operatorname{bin}(\text { node }(T, T)) & \leftarrow \operatorname{bin}(T) & \text { nicht no } \\
\operatorname{tree}\left(\operatorname{node}\left(T_{1}, T_{2}\right)\right) & \leftarrow \operatorname{tree}\left(T_{1}\right), \operatorname{tree}\left(T_{2}\right) & \text { normal }
\end{array}
$$

Comparison:

Normal clauses	Tree automaton
unary predicate	state
normal clause	transition
constructor in the head	input symbol
body	pre-condition

General Form:

$$
\begin{array}{ll}
p\left(a\left(X_{1}, \ldots, X_{k}\right)\right) & \leftarrow p_{1}\left(X_{1}\right), \ldots, p_{k}\left(X_{k}\right) \\
p(X) & \leftarrow \\
p(b) & \leftarrow
\end{array}
$$

Properties:

- Types then are in fact regular tree languages ;-)
- Types are closed under intersection:

$$
\begin{array}{ll}
\langle p, q\rangle\left(a\left(X_{1}, \ldots, X_{k}\right)\right) & \leftarrow\left\langle p_{1}, q_{1}\right\rangle\left(X_{1}\right), \ldots,\left\langle p_{k}, q_{k}\right\rangle\left(X_{k}\right) \quad \text { if } \\
p\left(a\left(X_{1}, \ldots, X_{k}\right)\right) & \leftarrow p_{1}\left(X_{1}\right), \ldots, p_{k}\left(X_{k}\right) \quad \text { and } \\
q\left(a\left(X_{1}, \ldots, X_{k}\right)\right) & \leftarrow q_{1}\left(X_{1}\right), \ldots, q_{k}\left(X_{k}\right)
\end{array}
$$

- Types are also closed under union :-)
- Queries $p(X)$ and $p(t)$ can be decided in polynomial time but:
- ... only in presence of tabulation !
- Or the program is topdown deterministic ...

Example: Topdown vs. Bottom-up

$$
\begin{array}{ll}
p\left(a\left(X_{1}, X_{2}\right)\right) & \leftarrow p_{1}\left(X_{1}\right), p_{2}\left(X_{2}\right) \\
p\left(a\left(X_{1}, X_{2}\right)\right) & \leftarrow p_{2}\left(X_{1}\right), p_{1}\left(X_{2}\right) \\
p_{1}(b) & \leftarrow \\
p_{2}(c) & \leftarrow
\end{array}
$$

... is bottom-up, but not topdown deterministic.
There is no topdown deterministic program for this type!

Topdown deterministic types are closed under intersection, but not under union !!!

For a set T of terms, we define the set $\Pi(T)$ of paths in terms from T :

$$
\begin{array}{ll}
\Pi(T) & \bigcup \bigcup \Pi(t) \mid t \in T\} \\
\Pi(b) & =\{b\} \\
\Pi\left(a\left(t_{1}, \ldots, t_{k}\right)\right)= & \left\{a_{j} w \mid w \in \Pi\left(t_{j}\right)\right\} \quad(k>0) \\
& / / \quad \text { for new unary constructors } a_{j}
\end{array}
$$

Example

$$
\begin{aligned}
T & =\{a(b, c), a(c, b)\} \\
\Pi(T) & =\left\{a_{1} b, a_{2} c, a_{1} c, a_{2} b\right\}
\end{aligned}
$$

Vice versa from a set P of paths, a set $\Pi^{-}(P)$ of terms can be recovered:

$$
\Pi^{-}(P)=\{t \mid \Pi(t) \subseteq P\}
$$

Example (Cont.):

$$
\begin{aligned}
P & =\left\{a_{1} b, a_{2} c, a_{1} c, a_{2} b\right\} \\
\Pi^{-}(P) & =\{a(b, b), a(b, c), a(c, b), a(c, c)\}
\end{aligned}
$$

The set has become larger !!

Theorem:

Assume that T is a regular set of terms. Then:

- $\Pi(T)$ is regular :-)
- $\left.\quad T \subseteq \Pi^{-}(\Pi(T)) \quad:-\right)$
- $\quad T=\Pi^{-}(\Pi(T)) \quad$ iff $\quad T$ is topdown deterministic $\left.\quad:-\right)$
- $\quad \Pi^{-}(\Pi(T))$ is the smallest superset of T which is topdown deterministic. :-)

Consequence:

If we are interested in topdown deterministic types, it suffices to determine the set of paths in terms !!!

Example (Cont.):

$$
\begin{array}{ll}
\operatorname{add}(X, Y, Z) & \leftarrow X=0, \operatorname{nat}(Y), Y=Z \\
\operatorname{add}(X, Y, Z) & \leftarrow \operatorname{nat}(X), X=s\left(X^{\prime}\right), Z=s\left(Z^{\prime}\right), \operatorname{add}\left(X^{\prime}, Y, Z^{\prime}\right) \\
\operatorname{mult}(X, Y, Z) & \leftarrow X=0, \operatorname{nat}(Y), Z=0 \\
\operatorname{mult}(X, Y, Z) & \leftarrow \operatorname{nat}(X), X=s\left(X^{\prime}\right), \operatorname{mult}\left(X^{\prime}, Y, Z^{\prime}\right), \operatorname{add}\left(Z^{\prime}, Y, Z\right)
\end{array}
$$

Question:

Which run-time checks are necessary?

Idea:

- Approximate the semantics of predicates by means of topdown-deterministic regular tree languages !
- Alternatively: Approximate the set of paths in the semantics of predicates by regular word languages !

Idea:

- All predicates $p / k, k>0$, are split into predicates

$$
p_{1} / 1, \ldots, p_{k} / 1
$$

Semantics:

Let \mathcal{C} denote a set of clauses.
The set $\llbracket p \rrbracket_{\mathcal{C}}$ is the set of tuples of ground terms $\left(s_{1}, \ldots, s_{k}\right)$, for which $p\left(s_{1}, \ldots, s_{k}\right)$ is provable :-)
$\llbracket p \rrbracket_{\mathcal{C}}$ (p predicate) thus is the smallest collection of sets of tuples for which:

$$
\sigma(\underline{t}) \in \llbracket p \rrbracket_{\mathcal{C}} \quad \text { when ever } \quad \forall i . \sigma\left(\underline{t}_{i}\right) \in \llbracket p_{i} \rrbracket_{\mathcal{C}}
$$

for clauses $p(\underline{t}) \leftarrow p_{1}\left(\underline{t}_{1}\right), \ldots, p_{n}\left(\underline{t}_{n}\right) \in \mathcal{C}$ and ground substitutions σ.

