Example (Cont.):

Furthermore,
lapp]¥(Z) 3 XAYAZ
[app]*(Z) O letyp =XAHAX NZANZ'

in 3H,X’,Z'. combine! (1, [app]F(entert (1))

where for YV =ZANHAZ' AN (X < X'):

enter? (1) = Z
combine’ (P, X AYANZ) = XANHAXANYANZNZ

Fixpoint iteration therefore yields:

[appl* (X) = XA (Y = 2Z) [applF(Z) = XAYAZ

886

Discussion:

e Exhaustive tabulation of the transformation [app]* is not
feasible.

e Therefore, we rely on demand-driven fixpoint iteration !

o The evaluation starts with the evaluation of the query g, 1i.e.,
with the evaluation of [[¢]* 1.

e The set of inspected fixpoint variables [p]*1 vyieldsa
description of all possible calls :-))

e For an efficient representation of functions 1 € Pos we
rely on binary decision diagrams (BDDs).

887

Background 6: Binary Decision Diagrams

Idea (1):

e Choose an ordering x1, ..., x;x on the arguments ...

e Represent the function f:B—...—=B by |[f|]o where:

bl =0
[flisi = funx; — if x; then [f 1];
else [f 0];

Example: fx1 xp x3 = x1 A (xp > X3)

888

... yields the tree:

889

Idea (2):

e Decision trees are exponentially large :-(
e Often, however, many sub-trees are isomorphic :-)

e Isomorphic sub-trees need to be represented only once ...

Idea (3):

e Nodes whose test is irrelevant, can also be abandoned ...

891

Discussion:

e This representation of the Boolean function f is unique !
—
Equality of functions is efficiently decidable !!

e For the representation to be useful, it should support the basic
operations: A\, V, —, =, Jx; ...

b1 A byl = by Aby
[f/\g]i—l = fun X;i — if X then [fl /\gl]l
else [f 0 A gO0];

// analogous for the remaining operators

892

[3 xj-f]i—l — fun x; — if x; then [3 x]-.fl]i
else [Jx;. f 0]; ifi <j
Fxj. fli-e = [fOV f1]

e Operations are executed bottom-up.

e Root nodes of already constructed sub-graphs are stored in a
unique-table

—
Isomorphy can be tested in constant time !

e The operations thus are polynomial in the size of the input
BDDs :-)

893

Discussion:

e Originally, BDDs have been developped for circuit verification.
e Today, they are also applied to the verification of software ...

e A system state is encoded by a sequence of bits.

e A BDD then describes the set of all reachable system states.

e Warning: Repeated application of Boolean operations may
increase the size dramatically !

e The variable ordering may have a dramatic impact ...

894

Example: (Xl — XZ) N\ (X3 — X4>

895

Discussion (2):

e In general, consider the function:
(x1 = x2) Ao A (X1 < Xop)
W.r.t. the variable ordering:
X1 < Xp <...< Xy

the BDD has 37 internal nodes.
W.r.t. the variable ordering:

X1 < X3 < ...<Xpp1 <Xp <Xy <...< Xy

the BDD has more than 2" internal nodes !

e A similar result holds for the implementation of Addition
through BDDs.

896

Discussion (3):

e Not all Boolean functions have small BDDs :~(

e Difficult functions:

O multiplication;

O indirect addressing ...

——> data-intensive programs cannot be analyzed in this way

=

897

Perspectives: Further Properties of Programs

Freeness: Is X; possibly/always unbound ?
—
If X; is always unbound, no indexing for X; is required :-)

If X; is never unbound, indexing for X; is complete :-)
Pair Sharing: Are X;, X; possibly bound to terms ¢;, t; with
Vars(t;) N Vars(t;) =0 ?

—

Literals without sharing can be executed in parallel :-)

Remark:

Both analyses may profit from Groundness !

898

52 Types for Prolog

Example:
nat(X) — X=0
nat(X) — X =5(Y),nat(Y)
nat_list(X) «— X =]
nat_list(X) <« X = [H|T],nat(H), nat_list(T)

899

Discussion

e In Prolog, a type is a set of ground terms with a simple
description.

e There is no common agreement what simple means :-)

e One possibility are (non-deterministic) finite tree automata or
normal Horn clauses:

nat_list([H|T]) — nat(H), nat_list(T) normal
bin(node(T, T)) « bin(T) nicht normal
tree(node(Ty, To)) <« tree(Ty),tree(T,) normal

900

Comparison:

Normal clauses

Tree automaton

unary predicate

normal clause

body

constructor in the head

state
transition
input symbol

pre-condition

General Form:

p(a(Xy,...,Xx)) «— pi(X1),..., pe(Xk)

p(X)
p(b)

%

%

901

Properties:

o Types then are in fact regular tree languages ;-)

e Types are closed under intersection:

(poa)(a(Xe, .., Xe) — (pr,90)(Xa), - (pog) (Xe) it
p(a(Xy, ..., Xy)) — pm(X1),..., pe(Xk) and
gla(Xy,..., Xx)) — q1(X1), ..., qx(Xx)

e Types are also closed under union :-)

e Queries p(X) and p(t) can be decided in polynomial time
but:

e .. onlyin presence of tabulation !

e Or the program is topdown deterministic ...

902

Example: Topdown vs. Bottom-up

p1(X1), pa(X2)
p2(X1), p1(X2)

1T 11

... 1s bottom-up, but not topdown deterministic.

There is no topdown deterministic program for this type !

—

Topdown deterministic types are closed under intersection, but not

under union !!!

903

Foraset T of terms, we define theset TI(T) of pathsin
terms from T:

Mn(T) = U{TI@) |t e T}

m(b) = {b}
ﬂ(&l(tl,. . .,tk)) = {a]-w | w & ﬂ(t]>} (k > 0)

// for new unary constructors 4;

Example

T = {a(b,c),a(c,b)}
I(T) = {mb,asc,aic,ab}

904

Vice versa from aset P of paths,aset TT7(P) of terms can be
recovered:

M-(P) = {t|T(t)CP)
Example (Cont.):

P = {mb,axc,aic,a,b}
M- (P) = {a(b,b),a(b,c),a(c,b),alcc)}

The set has become larger !!

905

Theorem:

Assume that T isaregular set of terms. Then:

e [TI(T) isregular :-)
o TCH (TT)) =)
e T=TI(T(T)) iff T istopdown deterministic :-)

e TI (TI(T)) isthesmallestsupersetof T which istopdown
deterministic. :-)

Consequence:

If we are interested in topdown deterministic types, it suffices to
determine the set of paths in terms !!!

906

Example (Cont.):

add(X,Y,Z) «— X=0,nat(Y),Y=Z2

2dd(X,Y,Z) — nat(X),X = s(X'),Z = s(Z'),add(X', Y, Z')

mult(X,Y,Z) «— X =0,nat(Y),Z=0

mult(X,Y,Z) «— nat(X), X =s(X'),mult(X',Y,Z"),add(Z',Y, Z)
Question:

Which run-time checks are necessary?

907

Idea:

e Approximate the semantics of predicates by means of
topdown-deterministic regular tree languages !

e Alternatively: Approximate the set of paths in the
semantics of predicates by regular word languages !

Idea:

e All predicates p/k, k > 0, are split into predicates
p/1,...,pe/ 1.

908

Semantics:

Let C denote a set of clauses.

The set [p]c is the set of tuples of ground terms (s, ..., sk), for
which p(sy,...,s;) isprovable :-)

Irle (v predicate) thus is the smallest collection of sets of tuples
for which:

o(t) € [r]c whenever Vi. o(t) € [pic

for clauses p(t) < pi1(t;),...,pn(t,) € C and ground
substitutions o.

909

