Perspective: Normal Horn Clauses

e Prolog may no longer be the sexiest programming language
)

e Horn clauses, though, are very well suited for the
specification of analysis problems.

e Itisa separate problem then to solve the stated analysis
problem :-)

o If the least solution cannot be computed exactly, approximate
solutions may at least yield approximative answers ...

Example: Cryptographic Protocols

943

Rules for the Exchange of Messages:

{Alice, Na} b (Bob)

{Na, Nb}pub(AIice)

Alice Bob

{Nb}pub(Bob)

Properties to be verified:
secrecy, authenticity;, ...

944

The Dolev-Yao Model:

e Messages are terms:

Representation
{m} encrypt (1, k)
<m1,m2> pair(ml,mz)
— Distinct terms represent distinct messages
— perfect cryptography. Therefore, we have:

{m}ty ={m'}p ift m =m' and k = kK’

e The attacker has full control over the network:

All messages are exchanged with the attacker.

945

Example: The Needham-Schroeder Protocol

1. A— B:{a,n,}y,
2. B— A: {Ifla, le}ka
3. A— B: {le}kb

Abstraction:

e Unbounded number of sessions !!

e Nonces sind not necessarily fresh ??

946

Idea:

Characterize the knowledge of the attacker by means of Horn
clauses ...

1. A— B:{a,n.}x, known({a,n,}y,) «—
2. B— A:{ng,mpx, known({X,np},) < known({a, X},)
3. A— B:{m}, known({X},) «— known({na, X}t)

Secrecy of Ny, : «— known(ny).

947

Discussion:

e We have abstracted all nonces with finitely many.

e Less restrictive (though still correct) abstractions are still
possible ...

. A— B:{a,n,},
2. B— A:{n,mp}r, known({X,n,(X)}x,) < known({a, X},)
3. A— B: {nb}kb

The fresh nonce is a function of the received nonce :-)

Blanchet 2001

948

Further capabilities of the attacker:

known({X}y)

known((X,Y))

known(X)

known(X)
known(Y)

I

I

known(X), known(Y)

// The attacker can encode
known(X), known(Y)

// The attacker can construct pairs
known({X}y), known(Y)

// The attacker can decode
known((X,Y))

known((X,Y))

// The attacker can project

949

Discussion

e Type inference for Prolog computed a regular abstraction of
the set of paths of the denotational semantics.

e Sometimes, this is too imprecise :-(

e Instead, we now approximate the denotational semantics
directly :-)

e This, however, can be quite expensive
—— not well suited for compilers :-(

——> in general, much more precise :-)

950

Simplification:

We only consider clauses whose heads are of the form:

p(f(X1, ..., Xk)) or p(b) or p(Xq,. .., Xx)

Such clauses are called HI.

Theorem

e Every finite set of H1-clauses is equivalent to a finite set of
simple H1-clauses of the form:

p(f(Xe, o, Xk)) — pu(Xq), oo pr(Xy)
p(Xi,.., X)) = pi(Xy), . (X))
p(b) —

e ...oreven to a finite set of normal H1-clauses.

951

Idea:

We successively introduce simper clauses until the complicated
ones become superfluous ...

Rule 1: Splitting
We separate independent parts from the pre-conditions:

head <« rest, p1(X),..., pm(X)

(X does not occur in head, rest)
is replaced with:

head <« rest,q()
90 = p(X),- o pu(X)

for a new predicate g/0.

952

Rule 2: Simplification

We introduce simpler derived clauses:

head

p(f (X, ..., Xk))

head

)
~

<—

—

I

I

p(f(ti, ..., t)), rest
pl(de)/ SO Pr(Xir)

implies:

pl(ti1)/ SR /Pr(tir), rest

p(ty, ..., t), rest
Pl(Xi1)/ sy Pr(Xir)

implies:

Pl(til)/ .« e /pr(tir), rest

953

Rule 3 (Cont.):

p(X)

pi(f(Xlr ce

p(f (X1, ..

head

p(b)
head

Simplification

I

pi(X), ..o, pm(X)
pin(Xin), .-, pir,(Xir,)

implies:

X
1

X)) = pu(Xu), - Py (X,

I

p(b), rest

implies:

I

rest

I

954

Rule 4:

ooooo

T

T

T

T

T

Guard Simplification

p1(X), ..o, pm(X)
pin(Xin), .-, Pir.(Xir,)

implies:
Pll(Xll) ///// pmrm (erm)

pr(X), - pu(X)

implies:

955

Theorem

Assume that C is finite set of clauses which is closed under
splitting and simplification and guard simplification.

Let Cyp C C denote the subset of simple clauses of C. Then for
all occurring predicates p,

[[p]]co — [[P]]C

Proof:

Induction on the depth of terms in tuples of [plc :-)

956

Transformation into normal clauses:

Introduce fresh predicates for conjunctions of unary predicates.

Assume A ={pi,...,pn} Then:

[A](D) — whenever p;(b) < foralli.

AJ(f(X, -, X)) = [Ba](Xa), -, [Bi (X)
whenever B; = {p; | X;, = X;} for

pilf (Xe o, X)) = P (X) os P (X3,)

957

Warning:

e The emptiness problem for Horn clauses in H1 is
DEXPTIME-complete !

e In many cases, our method still terminates quickly ;-)

e Not all Horn clauses are in H1 ~ :~(

——> an approximation technique is required ...

958

Approximation of Horn Clauses

Step 1:

Simplification of pre-conditions by splitting, simplification and
guard simplification (as before :-)

Step 2:

Introduction of copies of variables X. Every copy receives all
literals of X as pre-condition.

p(f(X, X)) «— gq(X) yields :

p(f(X, X)) — q(X),q(X)

959

Step 3:

Introduction of an auxiliary predicate for every non-variable
subterm of the head.

p(f(g(X,Y),Z)) « qi(X),q2(Y),q3(Z) yields:

p1(g(X,Y)) — q1(X),q92(Y),q3(2)
p(f(H,Z)) — pi1(H),q:1(X),92(Y),q3(Z)

960

