
Perspective: Normal Horn Clauses

• Prolog may no longer be the sexiest programming language

:-)

• Horn clauses, though, are very well suited for the

specification of analysis problems.

• It is a separate problem then to solve the stated analysis

problem :-)

• If the least solution cannot be computed exactly, approximate

solutions may at least yield approximative answers ...

Example: Cryptographic Protocols

943

Rules for the Exchange of Messages:

{Nb}pub(Bob)

{Na,Nb}pub(Alice)

{Alice,Na}pub(Bob)

Alice Bob

Properties to be verified:

secrecy, authenticity, ...

944

The Dolev-Yao Model:

• Messages are terms:
Representation

{m}k encrypt(m, k)

〈m1,m2〉 pair(m1,m2)

==⇒ Distinct terms represent distinct messages :-)

==⇒ perfect cryptography. Therefore, we have:

{m}k = {m′}k′ iff m = m′ and k = k′

• The attacker has full control over the network:

All messages are exchanged with the attacker.

945

Example: The Needham-Schroeder Protocol

1. A −→ B : {a, na}kb

2. B −→ A : {na, nb}ka

3. A −→ B : {nb}kb

Abstraction:

• Unbounded number of sessions !!

• Nonces sind not necessarily fresh ??

946

Idea:

Characterize the knowledge of the attacker by means of Horn

clauses ...

1. A −→ B : {a, na}kb known({a, na}kb) ←

2. B −→ A : {na, nb}ka known({X, nb}ka)← known({a,X}kb)

3. A −→ B : {nb}kb known({X}kb)← known({na,X}ka)

Secrecy of Nb : ← known(nb).

947

Discussion:

• We have abstracted all nonces with finitely many.

• Less restrictive (though still correct) abstractions are still

possible ...

1. A −→ B : {a, na}kb . . .

2. B −→ A : {na, nb}ka known({X, nb(X)}ka)← known({a,X}kb)

3. A −→ B : {nb}kb . . .

The fresh nonce is a function of the received nonce :-)

Blanchet 2001

948

Further capabilities of the attacker:

known({X}Y) ← known(X), known(Y)

// The attacker can encode

known(〈X,Y〉) ← known(X), known(Y)

// The attacker can construct pairs

known(X) ← known({X}Y), known(Y)

// The attacker can decode

known(X) ← known(〈X,Y〉)

known(Y) ← known(〈X,Y〉)

// The attacker can project

949

Discussion

• Type inference for Prolog computed a regular abstraction of

the set of paths of the denotational semantics.

• Sometimes, this is too imprecise :-(

• Instead, we now approximate the denotational semantics

directly :-)

• This, however, can be quite expensive

==⇒ not well suited for compilers :-(

==⇒ in general, much more precise :-)

950

Simplification:

We only consider clauses whose heads are of the form:

p(f (X1, . . . ,Xk)) or p(b) or p(X1, . . . ,Xk)

Such clauses are called H1.

Theorem

• Every finite set of H1-clauses is equivalent to a finite set of

simple H1-clauses of the form:

p(f (X1, . . . ,Xk)) ← p1(Xi1), . . . , pr(Xi1)

p(X1, . . . ,Xk) ← p1(Xi1), . . . , pr(Xi1)

p(b) ←

• ... or even to a finite set of normal H1-clauses.

951

Idea:

We successively introduce simper clauses until the complicated

ones become superfluous ...

Rule 1: Splitting

We separate independent parts from the pre-conditions:

head ← rest, p1(X), . . . , pm(X)

(X does not occur in head, rest)

is replaced with:

head ← rest, q()

q() ← p1(X), . . . , pm(X)

for a new predicate q/0.

952

Rule 2: Simplification

We introduce simpler derived clauses:

head ← p(f (t1, . . . , tk)), rest

p(f (X1, . . . ,Xk)) ← p1(Xi1), . . . , pr(Xir)

implies:

head ← p1(ti1), . . . , pr(tir), rest

head ← p(t1, . . . , tk), rest

p(X1, . . . ,Xk) ← p1(Xi1), . . . , pr(Xir)

implies:

head ← p1(ti1), . . . , pr(tir), rest

953

Rule 3 (Cont.): Simplification

p(X) ← p1(X), . . . , pm(X)

pi(f (X1, . . . ,Xk)) ← pi1(Xi1), . . . , piri(Xiri)

implies:

p(f (X1, . . . ,Xk))) ← p11(X11), . . . , pmrm(Xmrm)

head ← p(b), rest

p(b) ← implies:

head ← rest

954

Rule 4: Guard Simplification

p() ← p1(X), . . . , pm(X)

pi(f (X1, . . . ,Xk)) ← pi1(Xi1), . . . , piri(Xiri)

implies:

p() ← p11(X11), . . . , pmrm(Xmrm)

p() ← p1(X), . . . , pm(X)

pi(b) ← implies:

p() ←

955

Theorem

Assume that C is finite set of clauses which is closed under

splitting and simplification and guard simplification.

Let C0 ⊆ C denote the subset of simple clauses of C. Then for

all occurring predicates p,

[[p]]C0 = [[p]]C

Proof:

Induction on the depth of terms in tuples of [[p]]C :-)

956

Transformation into normal clauses:

Introduce fresh predicates for conjunctions of unary predicates.

Assume A = {p1, . . . , pm}. Then:

[A](b) ← whenever pi(b)← for all i.

[A](f (X1, . . . ,Xk)) ← [B1](X1), . . . , [Bk](Xk)

whenever Bi = {p jl | Xi jl = Xi} for

p j(f (X1, . . . ,Xk))← p j1(Xi j1), . . . , p jr j(Xi jr j
)

957

Warning:

• The emptiness problem for Horn clauses in H1 is

DEXPTIME-complete !

• In many cases, our method still terminates quickly ;-)

• Not all Horn clauses are in H1 :-(

==⇒ an approximation technique is required ...

958

Approximation of Horn Clauses

Step 1:

Simplification of pre-conditions by splitting, simplification and

guard simplification (as before :-)

Step 2:

Introduction of copies of variables X. Every copy receives all

literals of X as pre-condition.

p(f (X,X)) ← q(X) yields :

p(f (X,X′)) ← q(X), q(X′)

959

Step 3:

Introduction of an auxiliary predicate for every non-variable

subterm of the head.

p(f (g(X,Y), Z)) ← q1(X), q2(Y), q3(Z) yields :

p1(g(X,Y)) ← q1(X), q2(Y), q3(Z)

p(f (H, Z)) ← p1(H), q1(X), q2(Y), q3(Z)

960

