A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X \subseteq \mathbb{D}$ has a least upper bound $\bigsqcup X \in \mathbb{D}$.

Note:

Every complete lattice has

- \rightarrow a least element $\bot = \bigsqcup \emptyset \in \mathbb{D}$;
- \rightarrow a greatest element $\top = \bigsqcup \mathbb{D} \in \mathbb{D}$.

- 1. $\mathbb{D} = 2^{\{a,b,c\}}$ is a cl :-)
- 2. $\mathbb{D} = \mathbb{Z}$ with "=" is not.
- 3. $\mathbb{D} = \mathbb{Z}$ with " \leq " is neither.
- 4. $\mathbb{D} = \mathbb{Z}_{\perp}$ is also not :-(
- 5. With an extra element \top , we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top} = \mathbb{Z} \cup \{\perp, \top\}$:

We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\prod X$.

We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\prod X$.

Proof:

Construct $U = \{ u \in \mathbb{D} \mid \forall x \in X : u \sqsubseteq x \}.$ // the set of all lower bounds of $X : \cdot \cdot$ We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\prod X$.

Proof:

Construct $U = \{u \in \mathbb{D} \mid \forall x \in X : u \sqsubseteq x\}.$ // the set of all lower bounds of X :-) Set: $g := \bigsqcup U$ Claim: $g = \bigsqcup X$ (1) g is a lower bound of X:

Assume $x \in X$. Then: $u \sqsubseteq x$ for all $u \in U$ \implies x is an upper bound of U \implies $g \sqsubseteq x$:-) (1) g is a lower bound of X:

Assume $x \in X$. Then: $u \sqsubseteq x$ for all $u \in U$ \implies x is an upper bound of U \implies $g \sqsubseteq x$:-)

(2) g is the greatest lower bound of X:

Assume *u* is a lower bound of *X*. Then: $u \in U$ $\implies u \sqsubseteq g$:-))

$$x_i \supseteq f_i(x_1,\ldots,x_n) \qquad (*)$$

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

where:

x _i	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	2^{Expr}
\sqsubseteq \subseteq $\mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i:\mathbb{D}^n \to \mathbb{D}$	constraint	here:	•••

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

where:

x_i	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	2^{Expr}
\sqsubseteq \subseteq $\mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i : \mathbb{D}^n o \mathbb{D}$	constraint	here:	•••

Constraint for $\mathcal{A}[v]$ $(v \neq start)$: $\mathcal{A}[v] \subseteq \bigcap \{ [k]^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ Kante} \}$

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

where:

x _i	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	2^{Expr}
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i : \mathbb{D}^n \to \mathbb{D}$	constraint	here:	•••

Constraint for $\mathcal{A}[v]$ $(v \neq start)$: $\mathcal{A}[v] \subseteq \bigcap \{ [k]^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ Kante} \}$ Because:

 $x \sqsupseteq d_1 \land \ldots \land x \sqsupseteq d_k$ iff $x \sqsupseteq \bigsqcup \{d_1, \ldots, d_k\}$:-)

A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-) A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, is $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set *U* and $f x = (x \cap a) \cup b$. Obviously, every such *f* is monotonic :-)

(2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then:

- inc x = x + 1 is monotonic.
- dec x = x 1 is monotonic.

A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, is $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set *U* and $f x = (x \cap a) \cup b$. Obviously, every such *f* is monotonic :-)

(2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then:

- inc x = x + 1 is monotonic.
- dec x = x 1 is monotonic.
- inv x = -x is not monotonic :-)

Theorem:

If $f_1 : \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2 : \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1 : \mathbb{D}_1 \to \mathbb{D}_3$:-)

Theorem:

If $f_1 : \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2 : \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1 : \mathbb{D}_1 \to \mathbb{D}_3$:-)

Theorem:

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f : \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

Theorem:

If $f_1 : \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2 : \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1 : \mathbb{D}_1 \to \mathbb{D}_3$:-)

Theorem:

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f : \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

In particular for $F \subseteq [\mathbb{D}_1 \to \mathbb{D}_2]$,

$$\bigsqcup F = f \quad \text{mit} \quad f x = \bigsqcup \{g x \mid g \in F\}$$

For functions $f_i x = a_i \cap x \cup b_i$, the operations " \circ ", " \sqcup " and " \sqcap " can be explicitly defined by:

$$(f_{2} \circ f_{1}) x = a_{1} \cap a_{2} \cap x \cup a_{2} \cap b_{1} \cup b_{2}$$

$$(f_{1} \sqcup f_{2}) x = (a_{1} \cup a_{2}) \cap x \cup b_{1} \cup b_{2}$$

$$(f_{1} \sqcap f_{2}) x = (a_{1} \cup b_{1}) \cap (a_{2} \cup b_{2}) \cap x \cup b_{1} \cap b_{2}$$

$$x_i \supseteq f_i(x_1,\ldots,x_n), \quad i=1,\ldots,n$$
 (*)

where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

$$x_i \supseteq f_i(x_1,\ldots,x_n), \quad i=1,\ldots,n$$
 (*)

where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F : \mathbb{D}^n \to \mathbb{D}^n$ where $F(x_1, \dots, x_n) = (y_1, \dots, y_n)$ with $y_i = f_i(x_1, \dots, x_n)$.

$$x_i \supseteq f_i(x_1,\ldots,x_n), \quad i=1,\ldots,n$$
 (*)

where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $F(x_1, \dots, x_n) = (y_1, \dots, y_n)$ with $y_i = f_i(x_1, \dots, x_n)$.
- If all f_i are monotonic, then also F :-)

$$x_i \supseteq f_i(x_1,\ldots,x_n), \quad i=1,\ldots,n$$
 (*)

where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where $F(x_1, \dots, x_n) = (y_1, \dots, y_n)$ with $y_i = f_i(x_1, \dots, x_n)$.
- If all f_i are monotonic, then also F :-)
- We succesively approximate a solution. We construct:

$$\perp$$
, $F \perp$, $F^2 \perp$, $F^3 \perp$, ...

Hope: We eventually reach a solution ... ???

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø				
<i>x</i> ₂	Ø				
<i>x</i> ₃	Ø				

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø	{ a }			
<i>x</i> ₂	Ø	Ø			
<i>x</i> ₃	Ø	{ C }			

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø	{ a }	{ <i>a</i> , <i>c</i> }		
<i>x</i> ₂	Ø	Ø	Ø		
<i>x</i> ₃	Ø	{ c }	{ <i>a</i> , <i>c</i> }		

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø	{ a }	{ <i>a</i> , <i>c</i> }	{ <i>a</i> , <i>c</i> }	
<i>x</i> ₂	Ø	Ø	Ø	{ a }	
<i>x</i> ₃	Ø	{ c }	{ <i>a</i> , <i>c</i> }	{ <i>a</i> , <i>c</i> }	

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø	{ a }	{ <i>a</i> , <i>c</i> }	{ <i>a</i> , <i>c</i> }	dito
<i>x</i> ₂	Ø	Ø	Ø	{ a }	
<i>x</i> ₃	Ø	{ c }	{ <i>a</i> , <i>c</i> }	{ <i>a</i> , <i>c</i> }	

Theorem

- \bot , $F \bot$, $F^2 \bot$, ... form an ascending chain : $\bot \Box F \bot \Box F^2 \bot \Box$...
- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

Theorem

- \bot , $F \bot$, $F^2 \bot$, ... form an ascending chain : $\bot \subseteq F \bot \subseteq F^2 \bot \subseteq ...$
- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:

Foundation: $F^0 \perp = \perp \sqsubseteq F^1 \perp :$ -)

Step: Assume $F^{i-1} \perp \sqsubseteq F^i \perp$. Then $F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$

since *F* monotonic :-)

Step: Assume $F^{i-1} \perp \sqsubseteq F^i \perp$. Then $F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$ since F monotonic :-)

Conclusion:

If \mathbb{D} is finite, a solution can be found which is definitely the least :-)

Question:

What, if \mathbb{D} is not finite ???

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let $P = \{ d \in \mathbb{D} \mid f d \sqsubseteq d \}.$

Then $d_0 = \prod P$.

Bronisław Knaster (1893-1980), topology

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let $P = \{ d \in \mathbb{D} \mid f d \sqsubseteq d \}.$

Then $d_0 = \prod P$.

Proof:

(1) $d_0 \in P$:

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let $P = \{ d \in \mathbb{D} \mid f d \sqsubseteq d \}.$ Then $d_0 = \prod P$.

Proof:

(1)
$$d_0 \in P$$
:
 $f d_0 \sqsubseteq f d \sqsubseteq d$ for all $d \in P$
 $\implies f d_0$ is a lower bound of P
 $\implies f d_0 \sqsubseteq d_0$ since $d_0 = \prod P$
 $\implies d_0 \in P$:-)

(2)
$$f d_0 = d_0$$
:

(2)
$$f d_0 = d_0$$
:
 $f d_0 \sqsubseteq d_0$ by (1)
 $\implies f(f d_0) \sqsubseteq f d_0$ by monotonicity of f
 $\implies f d_0 \in P$
 $\implies d_0 \sqsubseteq f d_0$ and the claim follows :-)

(2)
$$f d_0 = d_0$$
:
 $f d_0 \sqsubseteq d_0$ by (1)
 $\implies f(f d_0) \sqsubseteq f d_0$ by monotonicity of f
 $\implies f d_0 \in P$
 $\implies d_0 \sqsubseteq f d_0$ and the claim follows :-)

(3) d_0 is least fixpoint:

(2)
$$f d_0 = d_0$$
:
 $f d_0 \sqsubseteq d_0$ by (1)
 $\implies f(f d_0) \sqsubseteq f d_0$ by monotonicity of f
 $\implies f d_0 \in P$
 $\implies d_0 \sqsubseteq f d_0$ and the claim follows :-)

(3) d_0 is least fixpoint: $f d_1 = d_1 \sqsubseteq d_1$ an other fixpoint $\implies d_1 \in P$ $\implies d_0 \sqsubseteq d_1$:-))

Remark:

The least fixpoint d_0 is in P and a lower bound :-) $\implies d_0$ is the least value x with $x \supseteq f x$

Remark:

The least fixpoint d_0 is in P and a lower bound :-) $\implies d_0$ is the least value x with $x \supseteq f x$

Application:

Assume $x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$ (*) is a system of constraints where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Remark:

The least fixpoint d_0 is in P and a lower bound :-) $\implies d_0$ is the least value x with $x \supseteq f x$

Application:

Assume $x_i \supseteq f_i(x_1, ..., x_n), \quad i = 1, ..., n$ (*) is a system of constraints where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

 \implies least solution of (*) = least fixpoint of F :-)

Example 1: $\mathbb{D} = 2^{U}$, $f x = x \cap a \cup b$

Example 1: $\mathbb{D} = 2^U$, $f x = x \cap a \cup b$

Example 1: $\mathbb{D} = 2^{U}$, $f x = x \cap a \cup b$

f	$f^k \perp$	f^k $ op$
0	Ø	U
1	Ь	$a \cup b$

Example 1: $\mathbb{D} = 2^{U}$, $f x = x \cap a \cup b$

f	$f^k \perp$	$f^k \top$
0	Ø	U
1	b	$a \cup b$
2	Ь	$a \cup b$

Example 1:
$$\mathbb{D} = 2^U$$
, $f x = x \cap a \cup b$

f	$f^k \perp$	$f^k \top$
0	Ø	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\mathbb{D} = \mathbb{N} \cup \{\infty\}$

Assume f x = x + 1. Then

$$f^i \perp = f^i \, 0 = i \quad \sqsubset \quad i+1 = f^{i+1} \perp$$

Example 1:
$$\mathbb{D} = 2^{U}$$
, $f x = x \cap a \cup b$

f	$f^k \perp$	f^k $ op$
0	Ø	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\mathbb{D} = \mathbb{N} \cup \{\infty\}$

Assume f x = x + 1. Then

$$f^i \bot = f^i \, 0 = i \quad \sqsubset \quad i+1 = f^{i+1} \bot$$

→ Ordinary iteration will never reach a fixpoint :-(
→ Sometimes, transfinite iteration is needed :-)

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

	1	2
0	Ø	Ø
1	$\{1, x > 1, x - 1\}$	{1}
2	Expr	$\{1, x > 1, x - 1\}$
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$
4	{1}	{1}
5	Expr	$\{1, x > 1, x - 1\}$

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

	1	2	3
0	Ø	Ø	Ø
1	$\{1, x > 1, x - 1\}$	{1}	{1}
2	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$
4	{1}	{1}	{1}
5	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

	1	2	3	4
0	Ø	Ø	Ø	Ø
1	$\{1, x > 1, x - 1\}$	{1}	{1}	{1}
2	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$
4	{1}	{1}	{1}	{1}
5	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

	1	2	3	4	5
0	Ø	Ø	Ø	Ø	
1	$\{1, x > 1, x - 1\}$	{1}	{1}	{1}	
2	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$	
3	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	dito
4	{1}	{1}	{1}	{1}	
5	Expr	$\{1, x > 1, x - 1\}$	$\{1, x > 1\}$	$\{1, x > 1\}$	

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

0

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

$$\begin{array}{c|ccccc}
1 & 1 \\
0 & \emptyset \\
1 & \{1\} \\
2 & \{1, x > 1\} \\
3 & \{1, x > 1\} \\
4 & \{1\} \\
5 & \{1, x > 1\}
\end{array}$$

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

