
A complete lattice (cl) D is a partial ordering where every

subset X ⊆ D has a least upper bound
⊔
X ∈ D .

Note:

Every complete lattice has

→ a least element ⊥ =
⊔
∅ ∈ D;

→ a greatest element ⊤ =
⊔

D ∈ D.

73

Examples:

1. D = 2{a,b,c} is a cl :-)

2. D = Z with “=” is not.

3. D = Z with “≤” is neither.

4. D = Z⊥ is also not :-(

5. With an extra element ⊤, we obtain the flat lattice

Z⊤
⊥ = Z∪ {⊥,⊤} :

210-1-2

⊥

⊤

74

We have:

Theorem:

If D is a complete lattice, then every subset X ⊆ D has a

greatest lower bound ⊔X.

Proof:

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds of X :-)

Set: g :=
⊔
U

Claim: g = ⊔X

75

We have:

Theorem:

If D is a complete lattice, then every subset X ⊆ D has a

greatest lower bound ⊔X.

Proof:

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds of X :-)

Set: g :=
⊔
U

Claim: g = ⊔X

76

We have:

Theorem:

If D is a complete lattice, then every subset X ⊆ D has a

greatest lower bound ⊔X.

Proof:

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds of X :-)

Set: g :=
⊔
U

Claim: g = ⊔X

77

(1) g is a lower bound of X :

Assume x ∈ X. Then:

u ⊑ x for all u ∈ U

==⇒ x is an upper bound of U

==⇒ g ⊑ x :-)

(2) g is the greatest lower bound of X :

Assume u is a lower bound of X. Then:

u ∈ U

==⇒ u ⊑ g :-))

78

(1) g is a lower bound of X :

Assume x ∈ X. Then:

u ⊑ x for all u ∈ U

==⇒ x is an upper bound of U

==⇒ g ⊑ x :-)

(2) g is the greatest lower bound of X :

Assume u is a lower bound of X. Then:

u ∈ U

==⇒ u ⊑ g :-))

79

80

81

82

We are looking for solutions for systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

83

We are looking for solutions for systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D×D ordering relation here: ⊇

fi: D
n → D constraint here: ...

Constraint for A[v] :

A[v] ⊆
⋂
{[[k]]♯ (A[u]) | k = (u, _, v) edge}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔
{d1, . . . , dk} :-)

84

We are looking for solutions for systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D×D ordering relation here: ⊇

fi: D
n → D constraint here: ...

Constraint for A[v] (v 6= start):

A[v] ⊆
⋂
{[[k]]♯ (A[u]) | k = (u, _, v) Kante}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔
{d1, . . . , dk} :-)

85

We are looking for solutions for systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D×D ordering relation here: ⊇

fi: D
n → D constraint here: ...

Constraint for A[v] (v 6= start):

A[v] ⊆
⋂
{[[k]]♯ (A[u]) | k = (u, _, v) Kante}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔
{d1, . . . , dk} :-)

86

A mapping f : D1 → D2 is called monotonic, if f (a) ⊑ f (b)

for all a ⊑ b.

87

A mapping f : D1 → D2 is called monotonic, if f (a) ⊑ f (b)

for all a ⊑ b.

Examples:

(1) D1 = D2 = 2U for a set U and f x = (x ∩ a) ∪ b.

Obviously, every such f is monotonic :-)

88

A mapping f : D1 → D2 is called monotonic, is f (a) ⊑ f (b)

for all a ⊑ b.

Examples:

(1) D1 = D2 = 2U for a set U and f x = (x ∩ a) ∪ b.

Obviously, every such f is monotonic :-)

(2) D1 = D2 = Z (with the ordering “≤”). Then:

• inc x = x + 1 is monotonic.

• dec x = x− 1 is monotonic.

textbullet

89

A mapping f : D1 → D2 is called monotonic, is f (a) ⊑ f (b)

for all a ⊑ b.

Examples:

(1) D1 = D2 = 2U for a set U and f x = (x ∩ a) ∪ b.

Obviously, every such f is monotonic :-)

(2) D1 = D2 = Z (with the ordering “≤”). Then:

• inc x = x + 1 is monotonic.

• dec x = x− 1 is monotonic.

• inv x = −x is not monotonic :-)

90

Theorem:

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also

f2 ◦ f1 : D1 → D3 :-)

91

Theorem:

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also

f2 ◦ f1 : D1 → D3 :-)

Theorem:

If D2 is a complete lattice, then the set [D1 → D2] of

monotonic functions f : D1 → D2 is also a complete lattice

where

f ⊑ g iff f x ⊑ g x for all x ∈ D1

92

Theorem:

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also

f2 ◦ f1 : D1 → D3 :-)

Theorem:

If D2 is a complete lattice, then the set [D1 → D2] of

monotonic functions f : D1 → D2 is also a complete lattice

where

f ⊑ g iff f x ⊑ g x for all x ∈ D1

In particular for F ⊆ [D1 → D2],
⊔

F = f mit f x =
⊔
{g x | g ∈ F}

93

For functions fi x = ai ∩ x ∪ bi, the operations “◦”, “⊔” and “⊓”

can be explicitly defined by:

(f2 ◦ f1) x = a1 ∩ a2 ∩ x ∪ a2 ∩ b1 ∪ b2

(f1 ⊔ f2) x = (a1 ∪ a2) ∩ x ∪ b1 ∪ b2

(f1 ⊓ f2) x = (a1 ∪ b1) ∩ (a2 ∪ b2) ∩ x ∪ b1 ∩ b2

94

Wanted: minimally small solution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : Dn → D are monotonic.

95

Wanted: minimally small solution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : Dn → D are monotonic.

Idea:

• Consider F : Dn → Dn where

F(x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

96

Wanted: minimally small solution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : Dn → D are monotonic.

Idea:

• Consider F : Dn → Dn where

F(x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

• If all fi are monotonic, then also F :-)

97

Wanted: minimally small solution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : Dn → D are monotonic.

Idea:

• Consider F : Dn → Dn where

F(x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

• If all fi are monotonic, then also F :-)

• We succesively approximate a solution. We construct:

⊥, F⊥, F2 ⊥, F3 ⊥, . . .

Hope: We eventually reach a solution ... ???

98

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

99

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} dito

x2 ∅ ∅ ∅ {a} dito

x3 ∅ {c} {a, c} {a, c} dito

100

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} dito

x2 ∅ ∅ ∅ {a} dito

x3 ∅ {c} {a, c} {a, c} dito

101

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} dito

x2 ∅ ∅ ∅ {a} dito

x3 ∅ {c} {a, c} {a, c} dito

102

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} dito

x2 ∅ ∅ ∅ {a}

x3 ∅ {c} {a, c} {a, c}

103

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} dito

x2 ∅ ∅ ∅ {a}

x3 ∅ {c} {a, c} {a, c}

104

Theorem

• ⊥, F⊥, F2 ⊥, . . . form an ascending chain :

⊥ ⊑ F⊥ ⊑ F2 ⊥ ⊑ . . .

• If Fk ⊥ = Fk+1 ⊥ , a solution is obtained which is the least

one :-)

• If all ascending chains are finite, such a k always exists.

105

Theorem

• ⊥, F⊥, F2 ⊥, . . . form an ascending chain :

⊥ ⊑ F⊥ ⊑ F2 ⊥ ⊑ . . .

• If Fk ⊥ = Fk+1 ⊥ , a solution is obtained which is the least

one :-)

• If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:

Foundation: F0 ⊥ = ⊥ ⊑ F1 ⊥ :-)

106

Step: Assume Fi−1 ⊥ ⊑ Fi ⊥ . Then

Fi ⊥ = F (Fi−1 ⊥) ⊑ F (Fi ⊥) = Fi+1 ⊥

since F monotonic :-)

107

Step: Assume Fi−1 ⊥ ⊑ Fi ⊥ . Then

Fi ⊥ = F (Fi−1 ⊥) ⊑ F (Fi ⊥) = Fi+1 ⊥

since F monotonic :-)

Conclusion:

If D is finite, a solution can be found which is definitely the

least :-)

Question:

3. What, if D is not finite ???

108

Theorem Knaster – Tarski

Assume D is a complete lattice. Then every monotonic function

f : D → D has a least fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔P .

109

110

Theorem Knaster – Tarski

Assume D is a complete lattice. Then every monotonic function

f : D → D has a least fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔P .

Proof:

(1) d0 ∈ P :

111

Theorem Knaster – Tarski

Assume D is a complete lattice. Then every monotonic function

f : D → D has a least fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔P .

Proof:

(1) d0 ∈ P :

f d0 ⊑ f d ⊑ d for all d ∈ P

==⇒ f d0 is a lower bound of P

==⇒ f d0 ⊑ d0 since d0 = ⊔P

==⇒ d0 ∈ P :-)

112

(2) f d0 = d0 :

113

(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f (f d0) ⊑ f d0 by monotonicity of f

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows :-)

114

(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f (f d0) ⊑ f d0 by monotonicity of f

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows :-)

(3) d0 is least fixpoint:

115

(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f (f d0) ⊑ f d0 by monotonicity of f

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows :-)

(3) d0 is least fixpoint:

f d1 = d1 ⊑ d1 an other fixpoint

==⇒ d1 ∈ P

==⇒ d0 ⊑ d1 :-))

116

Remark:

The least fixpoint d0 is in P and a lower bound :-)

==⇒ d0 is the least value x with x ⊒ f x

117

Remark:

The least fixpoint d0 is in P and a lower bound :-)

==⇒ d0 is the least value x with x ⊒ f x

Application:

Assume xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

is a system of constraints where all fi : Dn → D are monotonic.

118

Remark:

The least fixpoint d0 is in P and a lower bound :-)

==⇒ d0 is the least value x with x ⊒ f x

Application:

Assume xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

is a system of constraints where all fi : Dn → D are monotonic.

==⇒ least solution of(∗) == least fixpoint of F :-)

119

Example 1: D = 2U, f x = x ∩ a ∪ b

120

Example 1: D = 2U, f x = x ∩ a ∪ b

f f k ⊥ f k ⊤

0 ∅ U

121

Example 1: D = 2U, f x = x ∩ a ∪ b

f f k ⊥ f k ⊤

0 ∅ U

1 b a ∪ b

122

Example 1: D = 2U, f x = x ∩ a ∪ b

f f k ⊥ f k ⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

123

Example 1: D = 2U, f x = x ∩ a ∪ b

f f k ⊥ f k ⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

Example 2: D = N∪ {∞}

Assume f x = x + 1. Then

f i ⊥ = f i 0 = i ⊏ i + 1 = f i+1 ⊥

124

Example 1: D = 2U, f x = x ∩ a ∪ b

f f k ⊥ f k ⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

Example 2: D = N∪ {∞}

Assume f x = x + 1. Then

f i ⊥ = f i 0 = i ⊏ i + 1 = f i+1 ⊥

==⇒ Ordinary iteration will never reach a fixpoint :-(

==⇒ Sometimes, transfinite iteration is needed :-)

125

Conclusion:

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides :-)

126

Conclusion:

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

127

Conclusion:

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

0

1

2

3

4

5

128

Conclusion:

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1

0 ∅

1 {1, x > 1, x− 1}

2 Expr

3 {1, x > 1, x− 1}

4 {1}

5 Expr

129

Conclusion:

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2

0 ∅ ∅

1 {1, x > 1, x− 1} {1}

2 Expr {1, x > 1, x− 1}

3 {1, x > 1, x− 1} {1, x > 1, x− 1}

4 {1} {1}

5 Expr {1, x > 1, x− 1}

130

Conclusion:

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3

0 ∅ ∅ ∅

1 {1, x > 1, x− 1} {1} {1}

2 Expr {1, x > 1, x− 1} {1, x > 1}

3 {1, x > 1, x− 1} {1, x > 1, x− 1} {1, x > 1, x− 1}

4 {1} {1} {1}

5 Expr {1, x > 1, x− 1} {1, x > 1}

131

Conclusion:

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3 4

0 ∅ ∅ ∅ ∅

1 {1, x > 1, x− 1} {1} {1} {1}

2 Expr {1, x > 1, x− 1} {1, x > 1} {1, x > 1}

3 {1, x > 1, x− 1} {1, x > 1, x− 1} {1, x > 1, x− 1} {1, x > 1}

4 {1} {1} {1} {1}

5 Expr {1, x > 1, x− 1} {1, x > 1} {1, x > 1}

132

Conclusion:

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3 4 5

0 ∅ ∅ ∅ ∅

1 {1, x > 1, x− 1} {1} {1} {1}

2 Expr {1, x > 1, x− 1} {1, x > 1} {1, x > 1}

3 {1, x > 1, x− 1} {1, x > 1, x− 1} {1, x > 1, x− 1} {1, x > 1} dito

4 {1} {1} {1} {1}

5 Expr {1, x > 1, x− 1} {1, x > 1} {1, x > 1}

133

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the

current values of unknowns :-)

134

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the

current values of unknowns :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

0

1

2

3

4

5

135

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the

current values of unknowns :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1

0 ∅

1 {1}

2 {1, x > 1}

3 {1, x > 1}

4 {1}

5 {1, x > 1}

136

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the

current values of unknowns :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2

0 ∅

1 {1}

2 {1, x > 1}

3 {1, x > 1} dito

4 {1}

5 {1, x > 1}

137

