A complete lattice (cl) D is a partial ordering where every
subset X C I hasaleastupperbound |[|X €D

Note:

Every complete lattice has

— aleastelement | =[]0 €Dy
—  agreatestelement T =||D ¢<D.
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Examples:

1. D=2Wbdjsacl )

2. D = Z with “="is not.

3. D = Z with “<” is neither.
4. D =7, isalsonot :~(

5. With an extra element T, we obtain the flat lattice
Z, =7ZU{l, T}

/\
e @@ © D @
-<\/>
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We have:

Theorem:

If D isacomplete lattice, then every subset X CID hasa
greatest lower bound []X.
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We have:

Theorem:

If D isacomplete lattice, then every subset X CID hasa
greatest lower bound []X.

Prootf:

Construct U={ueD|VxeX: ulx}
//  the set of all lower bounds of X :-)
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We have:

Theorem:

If D isacomplete lattice, then every subset X CID hasa
greatest lower bound []X.

Prootf:

Construct U={ueb|VxeX: ul x}.

//  the set of all lower bounds of X :-)
Set: g:=U
Claim: ¢=[1X
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(1) gisalower bound of X:

Assume x € X. Then:
ul xforallue Ul

——  xis an upper bound of U
— gLx -)
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(1) gisalower bound of X:

Assume x € X. Then:
ul xforallue Ul

——  xis an upper bound of U
— gLx -)

(2)  gis the greatest lower bound of X :

Assume u is alower bound of X. Then:

uel
— ul g :-))
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We are looking for solutions for systems of constraints of the form:

xi I filxy, ..., x) ()
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We are looking for solutions for systems of constraints of the form:

xi I filxy, ..., x) ()
where:
X; unknown here: Alu]
D values here: 28"

C € DxD | ordering relation here: DO

fi: D" — D constraint here:
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We are looking for solutions for systems of constraints of the form:

xi I filxy, ..., x) ()
where:
X; unknown here: Alu]
D values here: 28"

C € DxD | ordering relation here: DO

fi: D" — D constraint here:

Constraint for A[v] (v # st&lrt):

Alo] € (O{IkD* (Alu]) | k = (u,_,v) Kante}
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We are looking for solutions for systems of constraints of the form:

xi I filxy, ..., x) ()
where:
X; unknown here: Alu]
D values here: 28"

C C DxD | ordering relation here: DO

fi: D" — D constraint here:

Constraint for A[v] (v # start):

Alo] € (O{IkD* (Alu]) | k = (u,_,v) Kante}
Because:
x ddy Ao A Nx Dde iff x 3 {dy,...,di} -)
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A mapping f:D; — D, iscalled monotonic, if f(a) C f(b)
forall aC b.
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A mapping f:D; — D, iscalled monotonic, if f(a) C f(b)
forall aC b.

Examples:

(1) Dy =D, =2Y forasetUand fx= (xNa)Ub.

Obviously, every such f is monotonic :-)
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A mapping f:D; — D, iscalled monotonic,is f(a) C f(b)
forall aC b.

Examples:

(1) Dy =D, =2Y forasetUand fx= (xNa)Ub.
Obviously, every such f is monotonic :-)

(2) DDy =D, = Z (with the ordering “<”). Then:

° incx =x-+1 1s monotonic.

e decx=x—-—1 1is monotonic.
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A mapping f:D; — D, iscalled monotonic,is f(a) C f(b)
forall aC b.

Examples:

(1) Dy =D, =2Y forasetUand fx= (xNa)Ub.
Obviously, every such f is monotonic :-)

(2) DDy =D, = Z (with the ordering “<”). Then:

° incx =x-+1 1s monotonic.
e decx=x—-—1 1is monotonic.

e invx = —x isnotmonotonic :-)
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Theorem:

If f1:D—D, and f,:D, — D3 aremonotonic, then also
f20f1:D1 — Dy -)
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Theorem:

If f1:D; —D, and f,:D, — D3 aremonotonic, then also
f20f1:D1 — Dy -)

Theorem:

If D, isacomplete lattice, then theset [D; — D,| of
monotonic functions f:ID; — [, isalsoa complete lattice
where

fEg iff fxCgx forallx € Dy
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Theorem:

If f1:D; —D, and f,:D, — D3 aremonotonic, then also
f20f1:D1 — Dy -)

Theorem:

If D, isacomplete lattice, then theset [D; — D,| of
monotonic functions f:ID; — [, isalsoa complete lattice
where

fCg iff fxCgx forallx € Dy

In particular for F C [D; — D],

| |[F=f mit fx=||{gx|geF}
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For functions f; x = a; N x U b;, the operations “o”, “lU” and “1M”
can be explicitly defined by:

(szfl)x = a1 MNay|MNxyU azﬂlﬁsz
(f1|_|f2)x = (611Uﬂz) NxU b1Ub2
(f1|_|f2)x = (a1Ub1)ﬂ(€l2Ub2) NxU blﬂbz
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Wanted: minimally small solution for:

xi 3 filxq,...,x), i=1,...,n

whereall f;: D" — 1 are monotonic.
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Wanted: minimally small solution for:

xi 3 filxq,...,x), i=1,...,n ()

whereall f;: D" — 1 are monotonic.

Idea:

e Consider F:D" — D" where

F(x1,...,x,) = (y1,-..,yn) with vy, = fi(x1,...,x,).
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Wanted: minimally small solution for:

xi 3 filxq,...,x), i=1,...,n

whereall f;: D" — 1 are monotonic.

Idea:

e¢ Consider F:D" — D" where

F(x1,...,x,) = (y1,...,y,) with

e Ifall f; aremonotonic,thenalso F

97

yi = fi(xy,..
)

, Xn).



Wanted: minimally small solution for:

xi 3 filxq,...,x), i=1,...,n

whereall f;: D" — 1 are monotonic.

Idea:

e Consider F:D" — D" where

F(x1,...,x,) = (y1,...,y,) with vy; = fi(xq,...

e Ifall f; aremonotonic, thenalso F :-)

e  We succesively approximate a solution. We construct:

1, FLlL, FP1L, P,

Hope: We eventually reach a solution ... ???
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Example: D =2{bet  C =C
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Example: D =2{bet  C =C

x1 2 {alUxs
X, 2 x3NA{a,b}
x3 2 xpUA{c}
The Iteration:
0 1 2 3
X1 )
Xo @
X3 @
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Example: D =2{bet  C =C

x; 2 {a}Ux;
X, 2 x3NA{a,b}
x3 2 xpUA{c}
The Iteration:
0 1 2 3
X1 @ {ﬂ}
Xy || O] ()
X3 @ {C}
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Example: D =2{bet  C =C

x1 2 {alUxs
X, 2 x3NA{a,b}
x3 2 xpUA{c}
The Iteration:
0] 1 2 3
x1 || 0| {a} | {a,c}
Xo @ @ @
X3 || 0| {c}|{a,c}
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Example: D=2t C=C
x1 2 {alUxs
X, 2 x3NA{a,b}
x3 2 x U{c}
The Iteration:
0 1 2 3
x| 0| {a} | {a,c}|{ac}
X2 [ O] O 0 {a}
x3 || 0| {c}t|{ac}|{ac}
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Example: D =2{bet  C =C

x1 2 {alUxs
X, 2 x3NA{a,b}
x3 2 xpUA{c}
The Iteration:
0] 1 2 3 4
x1 || 0| {a} | {a,c}|{a,c} |dito
Xy || O] () 0 {a}
x3 || 0| {c} | {a,c} |{a,c}
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Theorem

e |,FL1,F?1,... form an ascending chain :

1l C FlL CL F*1L C

e If Ff1l =F'1 asolution is obtained which is the least

one :-)

e If all ascending chains are finite, sucha k always exists.
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Theorem

e |,FL1,F?1,... form an ascending chain :

1l C FlL CL F*1L C

e If Ff1l =F'1 asolution is obtained which is the least

one :-)

e [f all ascending chains are finite, sucha k always exists.

Proof

The first claim follows by complete induction:

Foundation: F' L = L C F' 1 )
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Step: Assume F~' 1 C F'1. Then

Pi£:F(Pi_1£) EP(PZ£) :Fi—HJ_

since F monotonic :-)
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Step: Assume F~' 1 C F'1. Then

Pi£:F(Pi_1£) EP(PZ£) :Fi—HJ_

since F monotonic :-)

Conclusion:

If DD is finite, a solution can be found which is definitely the
least :-)

Question:

What,if D isnot finite ???

108



Theorem Knaster — Tarski

Assume [ isa complete lattice. Then every monotonic function
f:D— D hasaleast fixpoint dy € D.

Let P={deD]|fdCd}.
Then dy=1[1P
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Theorem Knaster — Tarski

Assume [ isa complete lattice. Then every monotonic function
f:D— D hasaleast fixpoint dy € D.

Let P={deD]|fdCd}.
Then dy=1[1P

Proof:

(1) doEPZ
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Theorem Knaster — Tarski
Assume [ isa complete lattice. Then every monotonic function
f:D— D hasaleast fixpoint dy € D.

Let P={deD]|fdCd}.
Then dy=1[1P

Proof:
(1) dyp e P:
fdyC fdCd forallde P
—— fdp isalowerbound of P
—— fdyCdy sincedy=1T1]P
—— dyg€P =)
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(2) fd() = d() .
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(2) fd() — d() .

fdoEdy by (1)

f(fdy) C fdy by monotonicity of f
fdo e P

do C fd and the claim follows :-)

1]
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(2) fd() — d() .

fdoEdy by (1)

f(fdy) C fdy by monotonicity of f
fdo e P

do C fd and the claim follows :-)

1]

(3) dy is least fixpoint:
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(2) fd() — d() .

fdoEdy by (1)

f(fdy) C fdy by monotonicity of f
fdo e P

do C fd and the claim follows :-)

1]

(3) dy is least fixpoint:

fdi =d; Cd; another fixpoint
— d, € P
— doC dy -))
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Remark:

The least fixpoint dy isin P andalower bound :-)

——= dy 1istheleastvaluex with x 1 fx
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Remark:

The least fixpoint dy isin P andalower bound :-)

——= dy 1istheleastvaluex with x 1 fx

Application:

Assume xi 3 fi(xy,...,x0), i=1,...,n ()

is a system of constraints where all f; : D" — D are monotonic.
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Remark:

The least fixpoint dy isin P andalower bound :-)

——= dy 1istheleastvaluex with x 1 fx

Application:

Assume xi 3 fi(xy,...,x0), i=1,...,n ()

is a system of constraints where all f; : D" — D are monotonic.

—— least solution of(*) == least fixpoint of F :-)
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Example 1: D=24Y fx=xNaUb
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Example1: D=2Y, fx=xnaUb

fIPALIFfT
0 u

-
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Example1: D=2Y, fx=xnaUb

FLALIFT
0| 0 U
1| b |aUb
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Example1: D=2Y, fx=xnaUb

FLALIFT
0 0 U
1|1 b |aUb
21 b |aUb
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Example1: D=2Y, fx=xnaUb

FLALIFT
0 0 U
1|1 b |aUb
21 b |aUb

Example 2: D =NU{oo}
Assume fx = x4 1. Then
ffl=f0=i C i+1=f*"1
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Example1: D=2Y, fx=xnaUb

FIALAT
o 0 u
1|1 b |aUb
21 b |aUb

Example 2: D =NU{oo}
Assume fx = x4 1. Then
ffl=f0=i C i+1=f""1

—— Ordinary iteration will never reach a fixpoint :-(

—— Sometimes, transfinite iteration is needed :-)
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Conclusion:

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides :-)

126



Conclusion:

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(
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Conclusion:

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

91 == W N — O
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Conclusion:

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

1
0
{l,x>1,x—1}
Expr
{1,x>1,x—1}
{1}
Expr

91 == W N — O

129



Conclusion:

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

1 2
0 0 0
11 {1, x>1,x—-1} {1}
2 Expr {1, x>1,x—1}
31 {1, x>1,x—1} | {L,x>1,x—1}
4 {1} {1}
5 Expr {1, x>1,x—1}
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Conclusion:

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

1 2 3
0 0 0 0
11 {1, x>1,x—-1} {1} {1}
2 Expr {1, x>1,x—1} {1,x > 1}
31 {1, x>1,x—1} | {L,x>1,x—1} | {1, x>1,x—1}
4 {1} {1} {1}
5 Expr {1, x>1,x—1} {1,x > 1}
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Conclusion:

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

1 2 3 4
0 0 0 0 0
1] {l,x>1,x—1} {1} (1} (1}
2 Expr {1,x>1,x—1} {1,x>1} {1,x>1}
31 {l,x>1,x—1} | {L,x>1,x—1} | {L,x>1,x—1} | {1,x>1}
4 {1} {1} {1} {1}
5 Expr {1,x>1,x—1} {1,x>1} {1,x>1}
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Conclusion:

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

1 2 3 4 5
0 0 0 0 0
1] {l,x>1,x—1} {1} (1} (1}
2 Expr {1,x>1,x—1} {1,x>1} {1,x>1}
31 {l,x>1,x—1} | {L,x>1,x—1} | {l,x>1,x—1} | {1,x>1} | dito
4 {1} {1} {1} {1}
5 Expr {1,x>1,x—1} {1,x>1} {1,x>1}
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Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns  :-)
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Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns :-)

Example:

g1 = W N = O
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Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns :-)

Example:

{1}
{1,x > 1}
{1,x > 1}

{1}
{1,x > 1}

g1 = W N = O
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Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns :-)

Example:
1 2
0 0
t {1
2| {1,x>1}
31 {1,x>1} | dito
41 {1}
51 {1,x>1}
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