A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X \subseteq \mathbb{D}$ has a least upper bound $\quad \sqcup X \in \mathbb{D}$.

Note:

Every complete lattice has
\rightarrow a least element $\perp=\bigsqcup \emptyset \quad \in \mathbb{D} ;$
$\rightarrow \quad$ a greatest element $\quad \top=\bigsqcup \mathbb{D} \quad \in \mathbb{D}$.

Examples:

1. $\mathbb{D}=2^{\{a, b, c\}}$ is a cl $\left.:-\right)$
2. $\mathbb{D}=\mathbb{Z}$ with " $=$ " is not.
3. $\mathbb{D}=\mathbb{Z}$ with " \leq " is neither.
4. $\mathbb{D}=\mathbb{Z}_{\perp}$ is also not
5. With an extra element T, we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top}=\mathbb{Z} \cup\{\perp, \top\} \quad:$

We have:

Theorem:
If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound ΠX.

We have:

Theorem:
If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound ΠX.

Proof:
Construct $\quad U=\{u \in \mathbb{D} \mid \forall x \in X: u \sqsubseteq x\}$.
// the set of all lower bounds of X :-)

We have:

Theorem:
If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound ΠX.

Proof:
Construct $\quad U=\{u \in \mathbb{D} \mid \forall x \in X: u \sqsubseteq x\}$.
// the set of all lower bounds of X :-)
Set: $\quad g:=\sqcup U$
Claim: $g=\Pi X$
(1) g is a lower bound of X :

Assume $\quad x \in X$. Then:
$u \sqsubseteq x$ for all $u \in U$
$\Longrightarrow \quad x$ is an upper bound of U
$\Longrightarrow \quad g \sqsubseteq x \quad:-)$
(1) g is a lower bound of X :

Assume $\quad x \in X$. Then:

$$
u \sqsubseteq x \text { for all } u \in U
$$

$\Longrightarrow \quad x$ is an upper bound of U

$$
\Longrightarrow \quad g \sqsubseteq x \quad:-)
$$

(2) g is the greatest lower bound of X :

Assume u is a lower bound of X. Then:

$$
\begin{aligned}
& u \in U \\
\Longrightarrow \quad & u \sqsubseteq g \quad:-))
\end{aligned}
$$

We are looking for solutions for systems of constraints of the form:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{*}
\end{equation*}
$$

We are looking for solutions for systems of constraints of the form:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{*}
\end{equation*}
$$

where:

x_{i}	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	$2^{\text {Expr }}$
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$	constraint	here:	\ldots

We are looking for solutions for systems of constraints of the form:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{*}
\end{equation*}
$$

where:

x_{i}	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	$2^{\text {Expr }}$
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$	constraint	here:	\ldots

Constraint for $\mathcal{A}[v] \quad(v \neq s t a r t)$:

$$
\mathcal{A}[v] \subseteq \bigcap\left\{\llbracket k \rrbracket^{\sharp}(\mathcal{A}[u]) \mid k=(u,, v) \text { Kante }\right\}
$$

We are looking for solutions for systems of constraints of the form:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{*}
\end{equation*}
$$

where:

x_{i}	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	$2^{\text {Expr }}$
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$	constraint	here:	\ldots

Constraint for $\mathcal{A}[v] \quad(v \neq$ start $)$:

$$
\mathcal{A}[v] \subseteq \bigcap\left\{\llbracket k \rrbracket^{\sharp}(\mathcal{A}[u]) \mid k=(u,, v) \text { Kante }\right\}
$$

Because:

$$
\left.x \sqsupseteq d_{1} \wedge \ldots \wedge x \sqsupseteq d_{k} \quad \text { iff } \quad x \sqsupseteq \bigsqcup\left\{d_{1}, \ldots, d_{k}\right\} \quad:-\right)
$$

A mapping $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

A mapping $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\mathbb{D}_{1}=\mathbb{D}_{2}=2^{U}$ for a set U and $f x=(x \cap a) \cup b$. Obviously, every such f is monotonic :-)

A mapping $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotonic, is $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

$\mathbb{D}_{1}=\mathbb{D}_{2}=2^{U} \quad$ for a set U and $f x=(x \cap a) \cup b$. Obviously, every such f is monotonic :-)
(2) $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{Z}$ (with the ordering " \leq "). Then:

- $\quad \operatorname{inc} x=x+1 \quad$ is monotonic.
- $\operatorname{dec} x=x-1$ is monotonic.

A mapping $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotonic, is $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

$\mathbb{D}_{1}=\mathbb{D}_{2}=2^{U} \quad$ for a set U and $f x=(x \cap a) \cup b$. Obviously, every such f is monotonic :-)
(2) $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{Z}$ (with the ordering " \leq "). Then:

- $\quad \operatorname{inc} x=x+1 \quad$ is monotonic.
- $\operatorname{dec} x=x-1$ is monotonic.
- $\quad \operatorname{inv} x=-x \quad$ is not monotonic :-)

Theorem:
If $f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ and $f_{2}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3}$ are monotonic, then also $\left.f_{2} \circ f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3} \quad:-\right)$

Theorem:

If $f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ and $f_{2}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3}$ are monotonic, then also $\left.f_{2} \circ f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3} \quad:-\right)$

Theorem:

If \mathbb{D}_{2} is a complete lattice, then the set $\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$ of monotonic functions $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is also a complete lattice where

$$
f \sqsubseteq g \quad \text { iff } \quad f x \sqsubseteq g x \quad \text { for all } x \in \mathbb{D}_{1}
$$

Theorem:

If $f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ and $f_{2}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3}$ are monotonic, then also $\left.f_{2} \circ f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3} \quad:-\right)$

Theorem:

If \mathbb{D}_{2} is a complete lattice, then the set $\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$ of monotonic functions $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is also a complete lattice where

$$
f \sqsubseteq g \quad \text { iff } \quad f x \sqsubseteq g x \quad \text { for all } x \in \mathbb{D}_{1}
$$

In particular for $F \subseteq\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$,

$$
\bigsqcup F=f \quad \operatorname{mit} \quad f x=\bigsqcup\{g x \mid g \in F\}
$$

For functions $f_{i} x=a_{i} \cap x \cup b_{i}$, the operations " \circ ", " \sqcup " and " \sqcap " can be explicitly defined by:

$$
\begin{aligned}
& \left(f_{2} \circ f_{1}\right) x=a_{1} \cap a_{2} \cap x \cup a_{2} \cap b_{1} \cup b_{2} \\
& \left(f_{1} \sqcup f_{2}\right) x=\left(a_{1} \cup a_{2}\right) \cap x \cup b_{1} \cup b_{2} \\
& \left(f_{1} \sqcap f_{2}\right) x=\left(a_{1} \cup b_{1}\right) \cap\left(a_{2} \cup b_{2}\right) \cap x \cup b_{1} \cap b_{2}
\end{aligned}
$$

Wanted: minimally small solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Wanted: minimally small solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ where

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } \quad y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right) .
$$

Wanted: minimally small solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ where

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } \quad y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

- If all f_{i} are monotonic, then also F :-)

Wanted: minimally small solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ where

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } \quad y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

- If all f_{i} are monotonic, then also F :-)
- We succesively approximate a solution. We construct:

$$
\perp, \quad F \perp, \quad F^{2} \perp, \quad F^{3} \perp, \quad \ldots
$$

Hope: We eventually reach a solution ... ???

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{aligned}
& x_{1} \supseteq\{a\} \cup x_{3} \\
& x_{2} \supseteq x_{3} \cap\{a, b\} \\
& x_{3} \supseteq x_{1} \cup\{c\}
\end{aligned}
$$

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} \supseteq\{a\} \cup x_{3} \\
x_{2} \supseteq x_{3} \cap\{a, b\} \\
x_{3} \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset				
x_{2}	\emptyset				
x_{3}	\emptyset				

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} \supseteq\{a\} \cup x_{3} \\
x_{2} \supseteq x_{3} \cap\{a, b\} \\
x_{3} \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$			
x_{2}	\emptyset	\emptyset			
x_{3}	\emptyset	$\{c\}$			

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} \supseteq\{a\} \cup x_{3} \\
x_{2} \supseteq x_{3} \cap\{a, b\} \\
x_{3} \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$	$\{a, c\}$		
x_{2}	\emptyset	\emptyset	\emptyset		
x_{3}	\emptyset	$\{c\}$	$\{a, c\}$		

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \sqsubseteq=\subseteq
$$

$$
\begin{aligned}
& x_{1} \supseteq\{a\} \cup x_{3} \\
& x_{2} \supseteq x_{3} \cap\{a, b\} \\
& x_{3} \supseteq x_{1} \cup\{c\}
\end{aligned}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$	$\{a, c\}$	$\{a, c\}$	
x_{2}	\emptyset	\emptyset	\emptyset	$\{a\}$	
x_{3}	\emptyset	$\{c\}$	$\{a, c\}$	$\{a, c\}$	

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \sqsubseteq=\subseteq
$$

$$
\begin{aligned}
& x_{1} \supseteq\{a\} \cup x_{3} \\
& x_{2} \supseteq x_{3} \cap\{a, b\} \\
& x_{3} \supseteq x_{1} \cup\{c\}
\end{aligned}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$	$\{a, c\}$	$\{a, c\}$	dito
x_{2}	\emptyset	\emptyset	\emptyset	$\{a\}$	
x_{3}	\emptyset	$\{c\}$	$\{a, c\}$	$\{a, c\}$	

Theorem

- $\quad \perp, F \perp, F^{2} \perp \ldots \quad$ form an ascending chain :

$$
\perp \sqsubseteq F \perp \sqsubseteq F^{2} \perp \sqsubseteq \ldots
$$

- If $F^{k} \perp=F^{k+1} \perp$, a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

Theorem

- $\quad \perp, F \perp, F^{2} \perp \ldots$ form an ascending chain :

$$
\perp \sqsubseteq F \perp \sqsubseteq F^{2} \perp \sqsubseteq \ldots
$$

- If $F^{k} \perp=F^{k+1} \perp$, a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:
Foundation: $F^{0} \perp=\perp \sqsubseteq F^{1} \perp$:-)

Step: Assume $F^{i-1} \perp \sqsubseteq F^{i} \perp$. Then

$$
F^{i} \perp=F\left(F^{i-1} \perp\right) \sqsubseteq F\left(F^{i} \perp\right)=F^{i+1} \perp
$$

since F monotonic :-)

Step: Assume $F^{i-1} \perp \sqsubseteq F^{i} \perp$. Then

$$
\begin{aligned}
& \quad F^{i} \perp=F\left(F^{i-1} \perp\right) \sqsubseteq F\left(F^{i} \perp\right)=F^{i+1} \perp \\
& \text { since } F \text { monotonic }:-)
\end{aligned}
$$

Conclusion:

If \mathbb{D} is finite, a solution can be found which is definitely the least :-)

Question:

What, if \mathbb{D} is not finite ???

Theorem
Knaster - Tarski
Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint $d_{0} \in \mathbb{D}$.

Let $P=\{d \in \mathbb{D} \mid f d \sqsubseteq d\}$.
Then $d_{0}=\Pi P$.

Bronistaw Knester (1893-1980), topolagy

Theorem
Knaster - Tarski
Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint $d_{0} \in \mathbb{D}$.

Let $P=\{d \in \mathbb{D} \mid f d \sqsubseteq d\}$.
Then $d_{0}=\Pi P$.

Proof:
(1) $d_{0} \in P$:

Theorem
Knaster - Tarski
Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint $d_{0} \in \mathbb{D}$.

Let $P=\{d \in \mathbb{D} \mid f d \sqsubseteq d\}$.
Then $d_{0}=\Pi P$.

Proof:
(1) $d_{0} \in P$:

$$
f d_{0} \sqsubseteq f d \sqsubseteq d \quad \text { for all } d \in P
$$

$\Longrightarrow f d_{0} \quad$ is a lower bound of P
$\Longrightarrow f d_{0} \sqsubseteq d_{0}$ since $d_{0}=\Pi P$
$\left.\Longrightarrow \quad d_{0} \in P \quad:-\right)$
(2) $f d_{0}=d_{0}$:
(2) $\quad f d_{0}=d_{0}$:

$$
\begin{array}{ll}
& f d_{0} \sqsubseteq d_{0} \quad \text { by } \quad(1) \\
\Longrightarrow & f\left(f d_{0}\right) \sqsubseteq f d_{0} \quad \text { by monotonicity of } f \\
\Longrightarrow & f d_{0} \in P \\
\Longrightarrow & \left.d_{0} \sqsubseteq f d_{0} \quad \text { and the claim follows } \quad:-\right)
\end{array}
$$

(2) $\quad f d_{0}=d_{0}$:

$$
\begin{array}{ll}
& f d_{0} \sqsubseteq d_{0} \quad \text { by } \quad(1) \\
\Longrightarrow & f\left(f d_{0}\right) \sqsubseteq f d_{0} \quad \text { by monotonicity of } f \\
\Longrightarrow & f d_{0} \in P \\
\Longrightarrow & \left.d_{0} \sqsubseteq f d_{0} \quad \text { and the claim follows } \quad:-\right)
\end{array}
$$

(3) d_{0} is least fixpoint:
(2) $\quad f d_{0}=d_{0}$:

$$
\begin{array}{ll}
& f d_{0} \sqsubseteq d_{0} \quad \text { by } \quad(1) \tag{1}\\
\Longrightarrow & f\left(f d_{0}\right) \sqsubseteq f d_{0} \quad \text { by monotonicity of } f \\
\Longrightarrow & f d_{0} \in P \\
\Longrightarrow & \left.d_{0} \sqsubseteq f d_{0} \quad \text { and the claim follows } \quad:-\right)
\end{array}
$$

(3) d_{0} is least fixpoint:

$$
\begin{array}{lll}
& f d_{1}=d_{1} \sqsubseteq d_{1} \quad \text { an other fixpoint } \\
\Longrightarrow & d_{1} \in P & \\
\Longrightarrow & d_{0} \sqsubseteq d_{1} & :-))
\end{array}
$$

Remark:

The least fixpoint d_{0} is in P and a lower bound :-)
$\Longrightarrow d_{0}$ is the least value x with $\quad x \sqsupseteq f x$

Remark:

The least fixpoint d_{0} is in P and a lower bound :-)
$\Longrightarrow d_{0}$ is the least value x with $\quad x \sqsupseteq f x$

Application:

Assume

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

is a system of constraints where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Remark:

The least fixpoint d_{0} is in P and a lower bound :-)
$\Longrightarrow \quad d_{0} \quad$ is the least value x with $\quad x \sqsupseteq f x$

Application:

Assume

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

is a system of constraints where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.
\Longrightarrow least solution of $(*)=$ least fixpoint of $F \quad:-)$

Example 1: $\quad \mathbb{D}=2^{u}, \quad f x=x \cap a \cup b$

Example 1: $\quad \mathbb{D}=2^{u}, f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U

Example 1: $\quad \mathbb{D}=2^{u}, f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$

Example 1: $\quad \mathbb{D}=2^{u}, f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 1: $\quad \mathbb{D}=2^{u}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\quad \mathbb{D}=\mathbb{N} \cup\{\infty\}$
Assume $f x=x+1$. Then

$$
f^{i} \perp=f^{i} 0=i \quad \sqsubset \quad i+1=f^{i+1} \perp
$$

Example 1: $\quad \mathbb{D}=2^{u}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\quad \mathbb{D}=\mathbb{N} \cup\{\infty\}$
Assume $f x=x+1$. Then

$$
f^{i} \perp=f^{i} 0=i \quad \sqsubset \quad i+1=f^{i+1} \perp
$$

\Longrightarrow Ordinary iteration will never reach a fixpoint
\Longrightarrow Sometimes, transfinite iteration is needed :-)

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

	1
0	\emptyset
1	$\{1, x>1, x-1\}$
2	Expr
3	$\{1, x>1, x-1\}$
4	$\{1\}$
5	Expr

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2
0	\emptyset	\emptyset
1	$\{1, x>1, x-1\}$	$\{1\}$
2	Expr	$\{1, x>1, x-1\}$
3	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$
4	$\{1\}$	$\{1\}$
5	Expr	$\{1, x>1, x-1\}$

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2	3
0	\emptyset	\emptyset	\emptyset
1	$\{1, x>1, x-1\}$	$\{1\}$	$\{1\}$
2	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$
3	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$
4	$\{1\}$	$\{1\}$	$\{1\}$
5	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2	3	4
0	\emptyset	\emptyset	\emptyset	\emptyset
1	$\{1, x>1, x-1\}$	$\{1\}$	$\{1\}$	$\{1\}$
2	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$	$\{1, x>1\}$
3	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1\}$
4	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$
5	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$	$\{1, x>1\}$

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Warning: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2	3	4	5
0	\emptyset	\emptyset	\emptyset	\emptyset	
1	$\{1, x>1, x-1\}$	$\{1\}$	$\{1\}$	$\{1\}$	
2	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$	$\{1, x>1\}$	
3	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1\}$	dito
4	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$	
5	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$	$\{1, x>1\}$	

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

0
1
2
3
4
5

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

	1
0	\emptyset
1	$\{1\}$
2	$\{1, x>1\}$
3	$\{1, x>1\}$
4	$\{1\}$
5	$\{1, x>1\}$

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

	1	2
0	\emptyset	
1	$\{1\}$	
2	$\{1, x>1\}$	
3	$\{1, x>1\}$	dito
4	$\{1\}$	
5	$\{1, x>1\}$	

