The code for Round Robin Iteration in Java looks as follows:

for
$$(i = 1; i \le n; i++) x_i = \bot;$$

do {
finished = true;
for $(i = 1; i \le n; i++)$ {
 $new = f_i(x_1, \dots, x_n);$
if $(!(x_i \supseteq new))$ {
finished = false;
 $x_i = x_i \sqcup new;$
}
} while (!finished);

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *d*-th RR-iteration.

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

(1) $y_i^{(d)} \sqsubseteq x_i^{(d)}$:-)

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

(1) $y_i^{(d)} \sqsubseteq x_i^{(d)}$:-) (2) $x_i^{(d)} \sqsubseteq z_i$ for every solution (z_1, \dots, z_n) :-)

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

- (1) $y_i^{(d)} \sqsubseteq x_i^{(d)}$:-) (2) $x_i^{(d)} \sqsubseteq z_i$ for every solution (z_1, \dots, z_n) :-) (2) If DD it explanation for a set of the set o
- (3) If RR-iteration terminates after *d* rounds, then $(x_1^{(d)}, \dots, x_n^{(d)})$ is a solution :-))

Warning:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Warning:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Good:

- \rightarrow *u* before *v*, if *u* \rightarrow^* *v*;
- \rightarrow entry condition before loop body :-)

Warning:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Good:

- \rightarrow *u* before *v*, if *u* \rightarrow^* *v*;
- \rightarrow entry condition before loop body :-)

Bad:

e.g., post-order DFS of the CFG, starting at start :-)

		1
ſ	0	Expr
	1	{1}
	2	$\{1, x - 1, x > 1\}$
	3	Expr
	4	{1}
	5	Ø

	1	2
0	Expr	$\{1, x > 1\}$
1	{1}	{1}
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$
3	Expr	$\{1, x > 1\}$
4	{1}	{1}
5	Ø	Ø

	1	2	3
0	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$
1	{1}	{1}	{1}
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$	$\{1, x > 1\}$
3	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$
4	{1}	{1}	{1}
5	Ø	Ø	Ø

 \Rightarrow

	1	2	3	4
0	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
1	{1}	{1}	{1}	
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$	$\{1, x > 1\}$	dito
3	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
4	{1}	{1}	{1}	
5	Ø	Ø	Ø	

significantly less efficient :-)

Final Question:

Why is a (or the least) solution of the constraint system usefull ???

Final Question:

Why is a (or the least) solution of the constraint system usefull ???

For a complete lattice \mathbb{D} , consider systems:

 $\begin{aligned} \mathcal{I}[start] &\supseteq d_0 \\ \mathcal{I}[v] &\supseteq [k]^{\sharp} (\mathcal{I}[u]) \quad k = (u, _, v) \quad \text{edge} \end{aligned}$ where $d_0 \in \mathbb{D}$ and all $[k]^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic ...

Final Question:

Why is a (or the least) solution of the constraint system usefull ???

For a complete lattice \mathbb{D} , consider systems:

 $\mathcal{I}[start] \supseteq d_0$ $\mathcal{I}[v] \supseteq [k]^{\ddagger} (\mathcal{I}[u]) \qquad k = (u, _, v) \quad \text{edge}$ where $d_0 \in \mathbb{D}$ and all $[k]^{\ddagger} : \mathbb{D} \to \mathbb{D}$ are monotonic ... $\longrightarrow \qquad \text{Monotonic Analysis Framework}$

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup\{\llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* v\}$$

Wanted: MOP (Merge Over all Paths)

 $\mathcal{I}^*[\boldsymbol{v}] = \bigsqcup\{\llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* \boldsymbol{v}\}$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then: $\mathcal{I}[v] \supseteq \mathcal{I}^*[v] \quad \text{for every } v$

Jeffrey D. Ullman, Stanford

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* v \}$$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then: $\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$ for every vIn particular: $\mathcal{I}[v] \supseteq [\![\pi]\!]^{\ddagger} d_0$ for every $\pi : start \to^* v$

Foundation: $\pi = \epsilon$ (empty path)

Foundation: $\pi = \epsilon$ (empty path) Then:

$$\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$$

Foundation: $\pi = \epsilon$ (empty path) Then: $[\![\pi]\!]^{\sharp} d_0 = [\![\epsilon]\!]^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$

Step: $\pi = \pi' k$ for $k = (u, _, v)$ edge.

Foundation: $\pi = \epsilon$ (empty path) Then: $\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$ Step: $\pi = \pi' k$ for $k = (u, _, v)$ edge. Then:

$$\llbracket \pi' \rrbracket^{\sharp} d_{0} \subseteq \mathcal{I}[\boldsymbol{u}] by I.H. \text{ for } \pi$$

$$\implies \llbracket \pi \rrbracket^{\sharp} d_{0} = \llbracket k \rrbracket^{\sharp} (\llbracket \pi' \rrbracket^{\sharp} d_{0})$$

$$\sqsubseteq \llbracket k \rrbracket^{\sharp} (\mathcal{I}[\boldsymbol{u}]) since \llbracket k \rrbracket^{\sharp} monotonic$$

$$\sqsubseteq \mathcal{I}[\boldsymbol{v}] since \mathcal{I} solution :-))$$

Disappointment:

Are solutions of the constraint system just upper bounds ???

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes :-(

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes :-(With the notable exception when all functions $[\![k]\!]^{\sharp}$ are distributive ... :-)

- distributive, if $f(\bigsqcup X) = \bigsqcup \{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

- distributive, if $f(\bigsqcup X) = \bigsqcup \{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

• $f x = x \cap a \cup b$ for $a, b \subseteq U$.

- distributive, if $f(\bigsqcup X) = \bigsqcup \{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

• $f x = x \cap a \cup b$ for $a, b \subseteq U$. Strictness: $f \emptyset = a \cap \emptyset \cup b = b = \emptyset$ whenever $b = \emptyset$:-(

- distributive, if $f(\bigsqcup X) = \bigsqcup \{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

• $f x = x \cap a \cup b$ for $a, b \subseteq U$. Strictness: $f \emptyset = a \cap \emptyset \cup b = b = \emptyset$ whenever $b = \emptyset$:-(Distributivity:

$$f(x_1 \cup x_2) = a \cap (x_1 \cup x_2) \cup b$$
$$= a \cap x_1 \cup a \cap x_2 \cup b$$
$$= f x_1 \cup f x_2 \qquad :-)$$

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, inc x = x + 1

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(Distributivity: $f(\bigsqcup X) = \bigsqcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-) • $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, inc x = x + 1Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(Distributivity: $f(\bigsqcup X) = \bigsqcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

• $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, inc x = x + 1Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(Distributivity: $f(\bigsqcup X) = \bigsqcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

• $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$: Strictness: $f \perp = 0 + 0 = 0$:-) • $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, inc x = x + 1Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(Distributivity: $f(\bigsqcup X) = \bigsqcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$:-)

• $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$: Strictness: $f \perp = 0 + 0 = 0$:-) Distributivity:

$$\begin{array}{rcl} f\left((1,4)\sqcup(4,1)\right) &=& f\left(4,4\right) &=& 8\\ &\neq& 5 &=& f\left(1,4\right)\sqcup f\left(4,1\right) &\quad :\text{-)} \end{array}$$

Remark:

If $f : \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Remark:

If $f : \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

Remark:

If $f : \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$. From that follows:

$$f b = f (a \sqcup b)$$
$$= f a \sqcup f b$$
$$\implies f a \sqsubseteq f b \qquad :-)$$

Assumption: all *v* are reachable from *start*.

Assumption: all *v* are reachable from *start*. Then:

Theorem

Kildall 1972

If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Gary A. Kildall (1942-1994).

Has developed the operating system CP/M and GUIs for PCs.

Assumption: all *v* are reachable from *start*. Then:

Theorem

Kildall 1972

If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Assumption: all *v* are reachable from *start*. Then:

Theorem

Kildall 1972

If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Proof:

It suffices to prove that \mathcal{I}^* is a solution :-) For this, we show that \mathcal{I}^* satisfies all constraints :-)) (1) We prove for *start* :

$$\mathcal{I}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* start \}$$
$$\supseteq \llbracket \epsilon \rrbracket^{\sharp} d_0$$
$$\supseteq d_0 :-)$$

(1) We prove for *start* :

$$\mathcal{I}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* start \}$$
$$\supseteq \llbracket \epsilon \rrbracket^{\sharp} d_0$$
$$\supseteq d_0 :-)$$

(2) For every k = (u, v) we prove:

$$\begin{aligned} \mathcal{I}^*[v] &= \bigsqcup\{\llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* v\} \\ & \supseteq \bigsqcup\{\llbracket \pi' k \rrbracket^{\sharp} d_0 \mid \pi' : start \to^* u\} \\ &= \bigsqcup\{\llbracket k \rrbracket^{\sharp} (\llbracket \pi' \rrbracket^{\sharp} d_0) \mid \pi' : start \to^* u\} \\ &= \llbracket k \rrbracket^{\sharp} (\bigsqcup\{\llbracket \pi' \rrbracket^{\sharp} d_0 \mid \pi' : start \to^* u\}) \\ &= \llbracket k \rrbracket^{\sharp} (\mathcal{I}^*[u]) \end{aligned}$$

since $\{\pi' \mid \pi' : start \to^* u\}$ is non-empty :-)

Warning:

• Reachability of all program points cannot be abandoned! Consider:

$$\begin{array}{c}
 \hline & \\
 \hline & \\
 \hline & \\
 \hline & \\
 \end{array} \qquad \text{where} \quad \mathbb{D} = \mathbb{N} \cup \{\infty\}$$

Warning:

• Reachability of all program points cannot be abandoned! Consider:

 $\begin{array}{c} 7 \\ \hline 0 \\ \hline 1 \\ \hline 2 \\ \end{array} \qquad \text{where} \quad \mathbb{D} = \mathbb{N} \cup \{\infty\} \\ \end{array}$

Then:

$$\mathcal{I}[2] = \operatorname{inc} 0 = 1$$
$$\mathcal{I}^*[2] = \bigsqcup \emptyset = 0$$

Warning:

• Reachability of all program points cannot be abandoned! Consider:

 $\begin{array}{c}
7\\
0
\end{array} \quad 1 \quad 2 \\
\end{array} \quad \text{where} \quad \mathbb{D} = \mathbb{N} \cup \{\infty\}$

Then:

$$\mathcal{I}[2] = \operatorname{inc} 0 = 1$$
$$\mathcal{I}^*[2] = \bigsqcup \emptyset = 0$$

• Unreachable program points can always be thrown away :-)

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

→ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

- → If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)
- → If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP :-)

1.2 Removing Assignments to Dead Variables

Example:

1:
$$x = y + 2;$$

2: $y = 5;$
3: $x = y + 3;$

The value of x at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable *x* dead at these program points :-)

Note:

- \rightarrow Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

Note:

- \rightarrow Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

- if $x \in X$ and π does not contain a definition of x; or:
- if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:
 - k is a use of x; and
 - π_1 does not contain a definition of *x*.

$$u$$
 π_1 k \sim

Thereby, the set of all defined or used variables at an edge $k = (_, lab, _)$ is defined by:

lab	used	defined
;	Ø	Ø
Pos(e)	Vars(e)	Ø
$\operatorname{Neg}\left(e ight)$	$Vars\left(e ight)$	Ø
x = e;	$Vars\left(e ight)$	$\{x\}$
x = M[e];	$Vars\left(e ight)$	$\{x\}$
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$	Ø

A variable x which is not live at u along π (relative to X) is called dead at u along π (relative to X).

Example:

where $X = \emptyset$. Then we observe:

	live	dead
0	<i>{y}</i>	$\{x\}$
1	Ø	$\{x, y\}$
2	<i>{y}</i>	$\{x\}$
3	Ø	$\{x, y\}$

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u ???

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u ???

Idea:

For every edge $k = (u, _, v)$, define a function $[[k]]^{\sharp}$ which transforms the set of variables which are live at v into the set of variables which are live at u...