The code for Round Robin Iteration in Java looks as follows:

```
for (i=1;i\leqn;i++) x 位 = ;
do {
    finished = true;
    for (i=1;i\leqn;i++){
        new = fi (x ( , .., 和);
        if (!(x, \sqsupseteq new)) {
            finished = false;
            xi}=\mp@subsup{x}{i}{}\sqcup\mathrm{ new;
        }
    }
} while (!finished);
```


Correctness:

Assume $y_{i}^{(d)}$ is the i-th component of $\quad F^{d} \perp$.
Assume $x_{i}^{(d)}$ is the value of x_{i} after the d-th RR-iteration.

Correctness:

Assume $y_{i}^{(d)}$ is the i-th component of $\quad F^{d} \perp$.
Assume $x_{i}^{(d)}$ is the value of x_{i} after the i-th RR-iteration.

One proves:
(1) $\left.y_{i}^{(d)} \sqsubseteq x_{i}^{(d)} \quad:-\right)$

Correctness:

Assume $y_{i}^{(d)}$ is the i-th component of $\quad F^{d} \perp$.
Assume $x_{i}^{(d)}$ is the value of x_{i} after the i-th RR-iteration.

One proves:
(1) $\left.y_{i}^{(d)} \sqsubseteq x_{i}^{(d)} \quad:-\right)$
(2) $x_{i}^{(d)} \sqsubseteq z_{i}$ for every solution $\left(z_{1}, \ldots, z_{n}\right)$:-)

Correctness:

Assume $\quad y_{i}^{(d)}$ is the i-th component of $F^{d} \perp$.
Assume $x_{i}^{(d)}$ is the value of x_{i} after the i-th RR-iteration.

One proves:
(1) $\left.y_{i}^{(d)} \sqsubseteq x_{i}^{(d)} \quad:-\right)$
(2) $x_{i}^{(d)} \sqsubseteq z_{i}$ for every solution $\left(z_{1}, \ldots, z_{n}\right)$:-)
(3) If RR-iteration terminates after d rounds, then

$$
\left.\left.\left(x_{1}^{(d)}, \ldots, x_{n}^{(d)}\right) \text { is a solution }:-\right)\right)
$$

Warning:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Warning:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Good:
$\rightarrow u$ before v, if $u \rightarrow^{*} v$;
$\rightarrow \quad$ entry condition before loop body :-)

Warning:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Good:
$\rightarrow u$ before v, if $u \rightarrow^{*} v$;
$\rightarrow \quad$ entry condition before loop body :-)
Bad:
e.g., post-order DFS of the CFG, starting at start :-)

Good:

Bad:

Inefficient Round Robin Iteration:

Inefficient Round Robin Iteration:

Inefficient Round Robin Iteration:

	1	2
0	Expr	$\{1, x>1\}$
1	$\{1\}$	$\{1\}$
2	$\{1, x-1, x>1\}$	$\{1, x-1, x>1\}$
3	Expr	$\{1, x>1\}$
4	$\{1\}$	$\{1\}$
5	\emptyset	\emptyset

Inefficient Round Robin Iteration:

	1	2	3
0	Expr	$\{1, x>1\}$	$\{1, x>1\}$
1	$\{1\}$	$\{1\}$	$\{1\}$
2	$\{1, x-1, x>1\}$	$\{1, x-1, x>1\}$	$\{1, x>1\}$
3	Expr	$\{1, x>1\}$	$\{1, x>1\}$
4	$\{1\}$	$\{1\}$	$\{1\}$
5	\emptyset	\emptyset	\emptyset

Inefficient Round Robin Iteration:

	1	2	3	4
0	Expr	$\{1, x>1\}$	$\{1, x>1\}$	
1	$\{1\}$	$\{1\}$	$\{1\}$	
2	$\{1, x-1, x>1\}$	$\{1, x-1, x>1\}$	$\{1, x>1\}$	dito
3	Expr	$\{1, x>1\}$	$\{1, x>1\}$	
4	$\{1\}$	$\{1\}$	$\{1\}$	
5	\emptyset	\emptyset	\emptyset	

$\Longrightarrow \quad$ significantly less efficient :-)
... end of background on:
Complete Lattices
... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system usefull ???

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system usefull ???

For a complete lattice \mathbb{D}, consider systems:

$$
\begin{array}{lll}
\mathcal{I}[\text { start }] & \sqsupseteq d_{0} & \\
\mathcal{I}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp}(\mathcal{I}[u]) \quad k=(u,-v) \quad \text { edge }
\end{array}
$$

where $d_{0} \in \mathbb{D}$ and all $\llbracket k \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ are monotonic \ldots

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system usefull ???

For a complete lattice \mathbb{D}, consider systems:

$$
\begin{array}{lll}
\mathcal{I}[\text { start }] & \sqsupseteq d_{0} & \\
\mathcal{I}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp}(\mathcal{I}[u]) \quad k=(u,-v) \quad \text { edge }
\end{array}
$$

where $d_{0} \in \mathbb{D}$ and all $\llbracket k \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ are monotonic ...

Monotonic Analysis Framework

Wanted: MOP (Merge Over all Paths)

$$
\mathcal{I}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Wanted: MOP (Merge Over all Paths)

$$
\mathcal{I}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Theorem
Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

$$
\mathcal{I}[v] \sqsupseteq \mathcal{I}^{*}[v] \quad \text { for every } v
$$

Jeffrey D. Ullman, Stanford

Wanted: MOP (Merge Over all Paths)

$$
\mathcal{I}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Assume \mathcal{I} is a solution of the constraint system. Then:

$$
\mathcal{I}[v] \sqsupseteq \mathcal{I}^{*}[v] \quad \text { for every } v
$$

In particular: $\mathcal{I}[v] \sqsupseteq \llbracket \pi \rrbracket^{\sharp} d_{0} \quad$ for every $\pi:$ start $\rightarrow{ }^{*} v$

Proof: Induction on the length of π.

Proof: Induction on the length of π.

Foundation: $\quad \pi=\epsilon$ (empty path)

Proof: Induction on the length of π.

Foundation: $\quad \pi=\epsilon$ (empty path)
Then:

$$
\llbracket \pi \rrbracket^{\sharp} d_{0}=\llbracket \epsilon \rrbracket^{\sharp} d_{0}=d_{0} \sqsubseteq \mathcal{I}[\mathrm{start}]
$$

Proof: Induction on the length of π.

Foundation: $\quad \pi=\epsilon$ (empty path)
Then:

$$
\llbracket \pi \rrbracket^{\sharp} d_{0}=\llbracket \epsilon \rrbracket^{\sharp} d_{0}=d_{0} \sqsubseteq \mathcal{I}[\text { start }]
$$

Step: $\pi=\pi^{\prime} k$ for $k=(u, \ldots, v)$ edge.

Proof: Induction on the length of π.

Foundation: $\quad \pi=\epsilon$ (empty path)
Then:

$$
\llbracket \pi \rrbracket^{\sharp} d_{0}=\llbracket \epsilon \rrbracket^{\sharp} d_{0}=d_{0} \sqsubseteq \mathcal{I}[\mathrm{start}]
$$

Step: $\pi=\pi^{\prime} k$ for $k=(u, \ldots v)$ edge.
Then:

$$
\begin{array}{rlrl}
\llbracket \pi^{\prime} \rrbracket^{\sharp} d_{0} & \sqsubseteq \mathcal{I}[u] & \text { by I.H. for } \pi \\
\Longrightarrow \llbracket \pi \rrbracket^{\sharp} d_{0} & =\llbracket k \rrbracket^{\sharp}\left(\llbracket \pi^{\prime} \rrbracket^{\sharp} d_{0}\right) & & \\
& \sqsubseteq \llbracket k \rrbracket^{\sharp}(\mathcal{I}[u]) & \text { since } & \llbracket k \rrbracket^{\sharp} \text { monotonic } \\
& \sqsubseteq \mathcal{I}[v] & \text { since } & \mathcal{I} \text { solution :-)) }
\end{array}
$$

Disappointment:

Are solutions of the constraint system just upper bounds ???

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes
With the notable exception when all functions $\llbracket k \rrbracket^{\sharp}$ are distributive ... :-)

The function $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called

- distributive, if $f(\sqcup X)=\sqcup\{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp=\perp$.
- totally distributive, if f is distributive and strict.

The function $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called

- distributive, if $f(\sqcup X)=\sqcup\{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp=\perp$.
- totally distributive, if f is distributive and strict.

Examples:

- $f x=x \cap a \cup b$ for $a, b \subseteq U$.

The function $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called

- distributive, if $f(\sqcup X)=\sqcup\{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp=\perp$.
- totally distributive, if f is distributive and strict.

Examples:

- $f x=x \cap a \cup b$ for $a, b \subseteq U$.

Strictness: $\quad f \emptyset=a \cap \emptyset \cup b=b=\emptyset \quad$ whenever $\quad b=\emptyset \quad:-($

The function $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called

- distributive, if $\quad f(\bigsqcup X)=\bigsqcup\{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp=\perp$.
- totally distributive, if f is distributive and strict.

Examples:

- $\quad f x=x \cap a \cup b$ for $a, b \subseteq U$.

Strictness: $\quad f \emptyset=a \cap \emptyset \cup b=b=\emptyset \quad$ whenever $\quad b=\emptyset \quad:-($
Distributivity:

$$
\begin{align*}
f\left(x_{1} \cup x_{2}\right) & =a \cap\left(x_{1} \cup x_{2}\right) \cup b \\
& =a \cap x_{1} \cup a \cap x_{2} \cup b \\
& =f x_{1} \cup f x_{2}
\end{align*}
$$

- $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$
- $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $\quad f \perp=\operatorname{inc} 0=1 \neq \perp:-($

- $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $f \perp=\operatorname{inc} 0=1 \neq \perp$:-(
Distributivity: $f(\sqcup X)=\sqcup\{x+1 \mid x \in X\}$ for $\emptyset \neq X \quad$:-)

- $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $f \perp=\operatorname{inc} 0=1 \neq \perp$:-(
Distributivity: $f(\sqcup X)=\sqcup\{x+1 \mid x \in X\}$ for $\emptyset \neq X \quad$:-)

- $\mathbb{D}_{1}=(\mathbb{N} \cup\{\infty\})^{2}, \quad \mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$
- $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $f \perp=\operatorname{inc} 0=1 \quad \neq \perp$:-(
Distributivity: $f(\sqcup X)=\bigsqcup\{x+1 \mid x \in X\}$ for $\emptyset \neq X \quad$:-)

- $\mathbb{D}_{1}=(\mathbb{N} \cup\{\infty\})^{2}, \quad \mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$:

Strictness: $f \perp=0+0=0 \quad:-)$

- $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $\quad f \perp=\operatorname{inc} 0=1 \quad \neq \perp:-($
Distributivity: $\quad f(\bigsqcup X)=\bigsqcup\{x+1 \mid x \in X\}$ for $\emptyset \neq X \quad:-)$

- $\mathbb{D}_{1}=(\mathbb{N} \cup\{\infty\})^{2}, \quad \mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$:

Strictness: $\quad f \perp=0+0=0 \quad:-)$
Distributivity:

$$
\begin{aligned}
f((1,4) \sqcup(4,1)) & =f(4,4)=8 \\
& \neq 5=f(1,4) \sqcup f(4,1) \quad:-)
\end{aligned}
$$

Remark:

If $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is distributive, then also monotonic :-)

Remark:
If $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b=b$.

Remark:

If $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b=b$.
From that follows:

$$
\begin{aligned}
f b & =f(a \sqcup b) \\
& =f a \sqcup f b \\
\Longrightarrow f a & \sqsubseteq f b \quad:-)
\end{aligned}
$$

Assumption: all v are reachable from start.

Assumption: all v are reachable from start .
Then:

Theorem
Kildall 1972
If all effects of edges $\llbracket k \rrbracket^{\sharp}$ are distributive, then: $\quad \mathcal{I}^{*}[v]=\mathcal{I}[v]$ for all v.

Gary A. Kildall (1942-1994).
Has developed the operating system CP/M and GUIs for PCs.

Assumption: all v are reachable from start .
Then:

Theorem
Kildall 1972
If all effects of edges $\llbracket k \rrbracket^{\sharp}$ are distributive, then: $\quad \mathcal{I}^{*}[v]=\mathcal{I}[v]$ for all v.

Assumption: all v are reachable from start .
Then:

Theorem
Kildall 1972
If all effects of edges $\llbracket k \rrbracket^{\sharp}$ are distributive, then: $\quad \mathcal{I}^{*}[v]=\mathcal{I}[v]$ for all v.

Proof:
It suffices to prove that \mathcal{I}^{*} is a solution :-)
For this, we show that \mathcal{I}^{*} satisfies all constraints :-))
(1) We prove for start:

$$
\begin{aligned}
\mathcal{I}^{*}[\text { start }] & =\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} \text { start }\right\} \\
& \sqsupseteq \llbracket \epsilon \rrbracket^{\sharp} d_{0} \\
& \left.\sqsupseteq d_{0} \quad:-\right)
\end{aligned}
$$

(1) We prove for start:

$$
\begin{aligned}
\mathcal{I}^{*}[\text { start }] & =\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} \text { start }\right\} \\
& \sqsupseteq \llbracket \epsilon \rrbracket^{\sharp} d_{0} \\
& \left.\sqsupseteq d_{0} \quad:-\right)
\end{aligned}
$$

(2) For every $k=(u,, v)$ we prove:

$$
\begin{aligned}
\mathcal{I}^{*}[v] & =\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\} \\
& \sqsupseteq \sqcup\left\{\llbracket \pi^{\prime} k \rrbracket^{\sharp} d_{0} \mid \pi^{\prime}: \text { start } \rightarrow^{*} u\right\} \\
& =\bigsqcup\left\{\llbracket k \rrbracket^{\sharp}\left(\llbracket \pi^{\prime} \rrbracket^{\sharp} d_{0}\right) \mid \pi^{\prime}: \text { start } \rightarrow^{*} u\right\} \\
& =\llbracket k \rrbracket^{\sharp}\left(\sqcup\left\{\llbracket \pi^{\prime} \rrbracket^{\sharp} d_{0} \mid \pi^{\prime}: \text { start } \rightarrow^{*} u\right\}\right) \\
& =\llbracket k \rrbracket^{\sharp}\left(\mathcal{I}^{*}[u]\right)
\end{aligned}
$$

since $\left\{\pi^{\prime} \mid \pi^{\prime}:\right.$ start $\left.\rightarrow^{*} u\right\}$ is non-empty :-)

Warning:

- Reachability of all program points cannot be abandoned! Consider:

Warning:

- Reachability of all program points cannot be abandoned! Consider:

Then:

$$
\begin{aligned}
& \mathcal{I}[2]=\operatorname{inc} 0=1 \\
& \mathcal{I}^{*}[2]=\sqcup \emptyset=0
\end{aligned}
$$

Warning:

- Reachability of all program points cannot be abandoned! Consider:

Then:

$$
\begin{aligned}
& \mathcal{I}[2]=\operatorname{inc} 0=1 \\
& \mathcal{I}^{*}[2]=\sqcup \emptyset=0
\end{aligned}
$$

- Unreachable program points can always be thrown away :-)

Summary and Application:

$\rightarrow \quad$ The effects of edges of the analysis of availability of expressions are distributive:

$$
\begin{aligned}
\left(a \cup\left(x_{1} \cap x_{2}\right)\right) \backslash b & =\left(\left(a \cup x_{1}\right) \cap\left(a \cup x_{2}\right)\right) \backslash b \\
& =\left(\left(a \cup x_{1}\right) \backslash b\right) \cap\left(\left(a \cup x_{2}\right) \backslash b\right)
\end{aligned}
$$

Summary and Application:

$\rightarrow \quad$ The effects of edges of the analysis of availability of expressions are distributive:

$$
\begin{aligned}
\left(a \cup\left(x_{1} \cap x_{2}\right)\right) \backslash b & =\left(\left(a \cup x_{1}\right) \cap\left(a \cup x_{2}\right)\right) \backslash b \\
& =\left(\left(a \cup x_{1}\right) \backslash b\right) \cap\left(\left(a \cup x_{2}\right) \backslash b\right)
\end{aligned}
$$

$\rightarrow \quad$ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

Summary and Application:

$\rightarrow \quad$ The effects of edges of the analysis of availability of expressions are distributive:

$$
\begin{aligned}
\left(a \cup\left(x_{1} \cap x_{2}\right)\right) \backslash b & =\left(\left(a \cup x_{1}\right) \cap\left(a \cup x_{2}\right)\right) \backslash b \\
& =\left(\left(a \cup x_{1}\right) \backslash b\right) \cap\left(\left(a \cup x_{2}\right) \backslash b\right)
\end{aligned}
$$

$\rightarrow \quad$ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)
\rightarrow If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP :-)

1.2 Removing Assignments to Dead Variables

Example:

$$
\begin{array}{ll}
1: & x=y+2 \\
2: & y=5 \\
3: & x=y+3
\end{array}
$$

The value of x at program points 1,2 is over-written before it can be used.

Therefore, we call the variable x dead at these program points :-)

Note:

$\rightarrow \quad$ Assignments to dead variables can be removed ;-)
$\rightarrow \quad$ Such inefficiencies may originate from other transformations.

Note:

$\rightarrow \quad$ Assignments to dead variables can be removed ;-)
$\rightarrow \quad$ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:
if $x \in X$ and π does not contain a definition of x; or:
if π can be decomposed into: $\quad \pi=\pi_{1} k \pi_{2}$ such that:

- k is a use of x; and
- π_{1} does not contain a definition of x.

Thereby, the set of all defined or used variables at an edge $k=\left(_, l a b, _\right) \quad$ is defined by:

lab	used	defined
$;$	\emptyset	\emptyset
$\operatorname{Pos}(e)$	$\operatorname{Vars}(e)$	\emptyset
$\operatorname{Neg}(e)$	$\operatorname{Vars}(e)$	\emptyset
$x=e ;$	$\operatorname{Vars}(e)$	$\{x\}$
$x=M[e] ;$	$\operatorname{Vars}(e)$	$\{x\}$
$M\left[e_{1}\right]=e_{2} ;$	$\operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)$	\emptyset

A variable x which is not live at u along $\pi \quad$ (relative to X) is called dead at u along π (relative to X).

Example:

where $X=\emptyset$. Then we observe:

	live	dead
0	$\{y\}$	$\{x\}$
1	\emptyset	$\{x, y\}$
2	$\{y\}$	$\{x\}$
3	\emptyset	$\{x, y\}$

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u ???

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u ???

Idea:

For every edge $k=(u,, v)$, define a function $\quad \llbracket k \rrbracket^{\sharp}$ which transforms the set of variables which are live at v into the set of variables which are live at u...

