The code for Round Robin Iteration in Java looks as follows:

for(i=1i <mit++)x = L;
do {
finished = true;
for (i =1;i < m;i++){
new = fi(x1,...,%,);
if (1(x; 2 new)) {
finished = false;
X, = Xx; U new;,

J
} while (!finished);

138

Correctness:

Assume y'¥ s the i-th component of F? L

) isthe value of x; after the d-th RR-iteration.

i

Assume Xx

139

Correctness:

Assume ¥ is the i-th component of F? L.
()

Assume x; ' isthevalueof x; after thei-th RR-iteration.

One proves:

O y'Cx?)

140

Correctness:

Assume vy isthe i-th component of F¢ L.
(d)

Assume x; ' isthevalueof x; after thei-th RR-iteration.

One proves:
d d
M w5’ Ex?)

(2) xgd) C z; foreverysolution (z1,...,z,) i)

141

Correctness:

Assume vy isthe i-th component of F¢ L.
(d)

Assume x; ' isthevalueof x; after thei-th RR-iteration.

One proves:
1)y =X o)
(2) xgd) C z; foreverysolution (z1,...,z,) i)

(3) If RR-iteration terminates after d rounds, then

(xgd), . x,(fl)) is a solution -))

142

Warning:

The efficiency of RR-iteration depends on the ordering of the
unknowns !!!

143

Warning:

The efficiency of RR-iteration depends on the ordering of the
unknowns !!!

Good:
— ubeforev, if u—*v;

— entry condition before loop body :-)

144

Warning:

The efficiency of RR-iteration depends on the ordering of the
unknowns !!!

Good:
— ubeforev, if u—*v;

— entry condition before loop body :-)

Bad:
e.g., post-order DFS of the CFG, starting at start :-)

145

Good:

146

Inefficient Round Robin Iteration:

QO = W N = O

147

Inefficient Round Robin Iteration:

1

Expr
{1}
{1, x—1,x>1}
Expr
{1}
0

QO = W N = O

148

Inefficient Round Robin Iteration:

1 2
0 Expr {1, x> 1}
i {1 {1
2 [{,x—1,x>1} | {1,x—1,x>1}
3 Expr {1,x > 1}
4 {1 {1
5 0 0

149

Inefficient Round Robin Iteration:

1 2 3
0 Expr {1, x> 1} {1,x > 1}
1 {1} {1} {1}
2 [{lL,x—1,x>1} | {I,x—1,x>1} | {1, x> 1}
3 Expr {1,x > 1} {1, x> 1}
4 m m m
5 0 0 0

150

—

Inefficient Round Robin Iteration:

1 2 3 4
0 Expr {1, x> 1} {1,x > 1}
1 {1} {1} {1}
2 | {L,x—1x>1} | {l,x—1,x>1} | {1,x>1} | dito
3 Expr {1,x > 1} {1, x> 1}
4 {1} {1} {1}
5 0 0 0

151

significantly less efficient

)

...end of background on: = Complete Lattices

152

...end of background on: = Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system usefull 7??

153

...end of background on: = Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system usefull ??7?

For a complete lattice D), consider systems:

T [start]
Z|0]

do

_
3 [k]F (Z[u) k= (u,_,v) edge

where dyp €D andall [k]*:D — D are monotonic ...

154

...end of background on: = Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system usefull ?77?

For a complete lattice D), consider systems:

T [start]
Z|0]

do

_
3 [k]F (Z[u) k= (u,_,v) edge

where dyp €D andall [k]*:D — D are monotonic ...
— Monotonic Analysis Framework

155

Wanted: MOP (Merge Over all Paths)

I*[0] = | {[n]*do | 7 : start —* v}

156

Wanted: MOP (Merge Over all Paths)

I*[0] = | {[n]*do | 7 : start —* v}

Theorem Kam, Ullman 1975

Assume 7 is a solution of the constraint system. Then:

Tlv] 3 I*[v] for every v

157

Jetfrey D. Ullman, Stanford

158

Wanted: MOP (Merge Over all Paths)

I*[0] = | {[n]*do | 7 : start —* v}

Theorem Kam, Ullman 1975

Assume 1 is a solution of the constraint system. Then:
Tlv] 3 I*[v] for every v

In particular: Z[v] 3 [n]*d, for every 7 :start —* v

159

Proof: Induction on the length of 7.

160

Proof: Induction on the length of 7.

Foundation: 7 =€ (empty path)

161

Proof: Induction on the length of 7.

Foundation: 7 =€ (empty path)
Then:
[7]*do = [e]fdo = dy = T|start]

162

Proof: Induction on the length of 7.

Foundation: 7 =€ (empty path)
Then:
[7]*do = [e]fdo = dy = T|start]

Step: mw =k for k= (u,_,v) edge.

163

Proof: Induction on the length of 7.

Foundation: 7 =€ (empty path)
Then:
[7]*do = [e]fdo = dy = T|start]

Step: mw =k for k= (u,_,v) edge.

Then:
[7]tdy E Z[u] by LH. for =
—= [nlfde = [k ([~']" do)
C [k]* (Z[u]) since [k]* monotonic
C 7y since Z solution :-))

164

Disappointment:

Are solutions of the constraint system just upper bounds ?77?

165

Disappointment:

Are solutions of the constraint system just upper bounds ?77?

Answer:

In general: yes :-(

166

Disappointment:

Are solutions of the constraint system just upper bounds ?77?

Answer:

In general: yes :-(

With the notable exception when all functions [k]* are
distributive ... :-)

167

The function f:ID; — D, is called

e distributive,if f(JX)=|J{fx|x€ X} forall() #X C D
o strict,if fL =_1.

e totally distributive,if f is distributive and strict.

168

The function f:ID; — D, is called

e distributive,if f(JX)=|J{fx|x€ X} forall() #X C D
o strict,if fL =_1.

e totally distributive,if f is distributive and strict.

Examples:

e fx=xNaUb for abCU.

169

The function f:ID; — D, is called

e distributive,if f(JX)=|J{fx|x€ X} forall() #X C D
o strict,if fL =_1.

e totally distributive,if f is distributive and strict.

Examples:

e fx=xNaUb for abCU.
Strictness: f0=an@uUb=b=10 whenever b=10

170

The function f:ID; — D, is called

e distributive,if f(JX)=|J{fx|x€ X} forall() #X C D
o strict,if fL =_1.

e totally distributive,if f is distributive and strict.

Examples:

e fx=xNaUb for abCU.
Strictness: f0=an@uUb=b=10 whenever b=10
Distributivity:

f(x1Uxy) = an(xyUxy)Ub
aNx;UaNx,Ub

= fxUfx -)

171

[]Dlz]Dz:NU{OO}, incx =x+1

172

[Dlz]DZZNU{OO}, incx =x+1
Strictness: f 1L =inc0=1 # 1

173

[Dlz]DZZNU{OO}, incx =x+1

Strictness: f 1L =inc0=1 # 1
Distributivity: f(JX) = [{x+1|xe€ X} for
D#£X)

174

]D)lz]D)z:NU{OO}, incx =x+1

Strictness: f 1L =inc0=1 # 1
Distributivity: f(JX) = [{x+1|xe€ X} for
D#£X)

]Dl — (N U {OO})Z,]Dz = NU {OO}, f(xl,xz) = X1+ Xo

175

]D)lz]D)z:NU{OO}, incx =x+1

Strictness: f 1L =inc0=1 # 1
Distributivity: f(JX) = [{x+1|xe€ X} for
D#£X)

D = (NU{c0})?, Dy =NU{oo}, fl(x,x)=2x1+2x:
Strictness: f 1 =0+0 = 0 -)

176

]D)lz]D)z:NU{OO}, incx =x+1

Strictness: f 1L =inc0=1 # 1
Distributivity: f(JX) = [{x+1|xe€ X} for
D#£X)

D) = (NU{o0})?, Dy =NU{oo}, f(x1,x)=x1+x:

Strictness: f 1 =0+0 = 0)
Distributivity:
f(L4HUEL) = f44) = 8
5 = f(L4uf(41))

177

Remark:

If f:D; — D, isdistributive, then also monotonic :-)

178

Remark:

If f:D; — D, isdistributive, then also monotonic :-)

Obviously: aC b iff allb=0D.

179

Remark:

If f:D; — D, isdistributive, then also monotonic :-)

Obviously: aC b iff allb=0D.

From that follows:

fb = f(aub)
Falfb

—— fa T fb -)

180

Assumption: all v arereachable from start.

181

Assumption: all v arereachable from start .
Then:

Theorem Kildall 1972

If all effects of edges [k]* are distributive, then: ~ Z*[v] =

forall v.

182

Gary A. Kildall (1942-1994).
Has developed the operating system CP/M and GUISs for PCs.

183

Assumption: all v arereachable from start .
Then:

Theorem Kildall 1972

If all effects of edges [k]* are distributive, then: ~ Z*[v] =

forall v.

184

Assumption: all v arereachable from start .

Then:

Theorem

If all effects of edges [[k]*
forall v.

Proof:

It suffices to prove that Z*
For this, we show that Z*

Kildall 1972

are distributive, then: I*v] =

is a solution :-)

satisfies all constraints :-))

185

(1) We prove for start:

T* |start]

|_|{[[7r]]jj do | 7T : start —* Start}

[[e]]ﬁ dy
do I-)

|

186

(1) We prove for

T |start]

start :

|_|{[[7r]]jj do | 7T : start —* Start}

[e]* do
do I-)

|

(2) Forevery k= (u,_,v) we prove:

Z*[o]

L

since {7 |7 :start -* u} is non-empty

{[7]*do | 7 : start —* v}
{[7'k]*dy | 7' - start —* u}
{[K]F ([P dy) | 7 2 start —* u}
K (DT do | 7 - start —*)
[k (2*[u)

187

)

Warning:

e Reachability of all program points cannot be abandoned!
Consider:

7 .
\@ @'_nf@ where D =NU {0}

188

Warning:

e Reachability of all program points cannot be abandoned!

Consider:
7 .
\@ @'_nf@ where D =NU {0}
Then:
2] = incO = 1
72 = |0 = 0

189

Warning:

e Reachability of all program points cannot be abandoned!

Consider:
7 .
\@ @'_nf@ where D =NU {0}
Then:
2] = incO = 1
72 = |0 = 0

e Unreachable program points can always be thrown away :-)

190

Summary and Application:

— The effects of edges of the analysis of availability of
expressions are distributive:

(aU(x1Nx))\b = ((aUxy)N(aUxy))\b

((aUx1)\b) N ((aUx2)\b)

191

Summary and Application:

— The effects of edges of the analysis of availability of
expressions are distributive:

(aU(x1Nx))\b = ((aUxy)N(aUxy))\b
((aUx1)\b) N ((aUx2)\b)

— If all effects of edges are distributive, then the MOP can be
computed by means of the constraint system and
RR-iteration. :-)

192

Summary and Application:

— The effects of edges of the analysis of availability of
expressions are distributive:

(aU(x1Nx))\b = ((aUxy)N(aUxy))\b
((aUx1)\b) N ((aUx2)\b)

— If all effects of edges are distributive, then the MOP can be
computed by means of the constraint system and
RR-iteration. :-)

— If not all effects of edges are distributive, then RR-iteration

for the constraint system at least returns a safe upper bound
to the MOP :-)

193

1.2 Removing Assignments to Dead Variables
Example:

1: X=1Y+2
2: y=2>5;
x=1y+3;

The value of x atprogram points 1,2 isover-written before
it can be used.

Therefore, we call the variable x dead at these program points

)

194

Note:

— Assignments to dead variables can be removed ;-)

— Such inefficiencies may originate from other
transformations.

195

Note:

— Assignments to dead variables can be removed ;-)

— Such inefficiencies may originate from other
transformations.

Formal Definition:

The variable x iscalled liveat u alongthe path = starting
at u relativetoaset X of variables either:

if x€ X and 7 doesnotcontain a definition of x; or:

if 7 canbedecomposed into: 7 = mkm such that:

e k isauseof x;and

e m doesnotcontain a definition of x.

196

@———+O~0—0O

Thereby, the set of all defined or used variables at an edge
k= (_Iab,) isdefined by:

lab used defined
; 0 0
Pos (e) Vars (e) 0
Neg (¢) Vars (e) 0

X =e; Vars (e) {x}

x = Mlel; Vars (e) {x}
Mlei| = es; | Vars (e;) U Vars (e,))

197

A variable x whichisnotliveat u along 7 (relative to X)
is called dead at u along 7 (relative to X).

Example:

xX=y+2, y=D5 x=y+3;
o—0—e—0

where X = (). Then we observe:

live | dead

{v}| {x}
0 1 {x v}

{v}| {x}
0 | {x v}

LW NN =, O

198

The variable x isliveat u (relativeto X)if x isliveat u
along some path to the exit (relative to X). Otherwise, x is
called dead at u (relative to X).

199

The variable x isliveat u (relativeto X)if x isliveat u
along some path to the exit (relative to X). Otherwise, x is
called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every
u???

200

The variable x isliveat u (relativeto X)if x isliveat u
along some path to the exit (relative to X). Otherwise, x is
called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every
u???

Idea:

For every edge k = (u,_,v), define a function [k]* which
transforms the set of variables which are live at v into the set of
variables which are live at u ...

201

