
The code for Round Robin Iteration in Java looks as follows:

for (i = 1; i ≤ n; i++) xi = ⊥;

do {

finished = true;

for (i = 1; i ≤ n; i++) {

new = fi(x1, . . . , xn);

if (!(xi ⊒ new)) {

finished = false;

xi = xi ⊔ new;

}

}

} while (!finished);

138



Correctness:

Assume y
(d)
i is the i-th component of Fd ⊥.

Assume x
(d)
i is the value of xi after the d-th RR-iteration.

139



Correctness:

Assume y
(d)
i is the i-th component of Fd ⊥.

Assume x
(d)
i is the value of xi after the i-th RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i :-)

140



Correctness:

Assume y
(d)
i is the i-th component of Fd ⊥.

Assume x
(d)
i is the value of xi after the i-th RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i :-)

(2) x
(d)
i ⊑ zi for every solution (z1, . . . , zn) :-)

141



Correctness:

Assume y
(d)
i is the i-th component of Fd ⊥.

Assume x
(d)
i is the value of xi after the i-th RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i :-)

(2) x
(d)
i ⊑ zi for every solution (z1, . . . , zn) :-)

(3) If RR-iteration terminates after d rounds, then

(x(d)
1 , . . . , x

(d)
n ) is a solution :-))

142



Warning:

The efficiency of RR-iteration depends on the ordering of the

unknowns !!!

143



Warning:

The efficiency of RR-iteration depends on the ordering of the

unknowns !!!

Good:

→ u before v, if u →∗ v;

→ entry condition before loop body :-)

144



Warning:

The efficiency of RR-iteration depends on the ordering of the

unknowns !!!

Good:

→ u before v, if u →∗ v;

→ entry condition before loop body :-)

Bad:

e.g., post-order DFS of the CFG, starting at start :-)

145



Good:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

Bad:

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1;

146



Inefficient Round Robin Iteration:

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1;

0

1

2

3

4

5

147



Inefficient Round Robin Iteration:

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1

0 Expr

1 {1}

2 {1, x− 1, x > 1}

3 Expr

4 {1}

5 ∅

148



Inefficient Round Robin Iteration:

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2

0 Expr {1, x > 1}

1 {1} {1}

2 {1, x− 1, x > 1} {1, x− 1, x > 1}

3 Expr {1, x > 1}

4 {1} {1}

5 ∅ ∅

149



Inefficient Round Robin Iteration:

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2 3

0 Expr {1, x > 1} {1, x > 1}

1 {1} {1} {1}

2 {1, x− 1, x > 1} {1, x− 1, x > 1} {1, x > 1}

3 Expr {1, x > 1} {1, x > 1}

4 {1} {1} {1}

5 ∅ ∅ ∅

150



Inefficient Round Robin Iteration:

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2 3 4

0 Expr {1, x > 1} {1, x > 1}

1 {1} {1} {1}

2 {1, x− 1, x > 1} {1, x− 1, x > 1} {1, x > 1} dito

3 Expr {1, x > 1} {1, x > 1}

4 {1} {1} {1}

5 ∅ ∅ ∅

==⇒ significantly less efficient :-)

151



... end of background on: Complete Lattices

152



... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system usefull ???

153



... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system usefull ???

For a complete lattice D, consider systems:

I [start] ⊒ d0

I [v] ⊒ [[k]]♯ (I [u]) k = (u, _, v) edge

where d0 ∈ D and all [[k]]♯ : D → D are monotonic ...

154



... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system usefull ???

For a complete lattice D, consider systems:

I [start] ⊒ d0

I [v] ⊒ [[k]]♯ (I [u]) k = (u, _, v) edge

where d0 ∈ D and all [[k]]♯ : D → D are monotonic ...

==⇒ Monotonic Analysis Framework

155



Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔
{[[π ]]♯ d0 | π : start →∗ v}

156



Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔
{[[π ]]♯ d0 | π : start →∗ v}

Theorem Kam, Ullman 1975

Assume I is a solution of the constraint system. Then:

I [v] ⊒ I∗[v] for every v

157



Jeffrey D. Ullman, Stanford

158



Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔
{[[π ]]♯ d0 | π : start →∗ v}

Theorem Kam, Ullman 1975

Assume I is a solution of the constraint system. Then:

I [v] ⊒ I∗[v] for every v

In particular: I [v] ⊒ [[π ]]♯ d0 for every π : start →∗ v

159



Proof: Induction on the length of π .

160



Proof: Induction on the length of π .

Foundation: π = ǫ (empty path)

161



Proof: Induction on the length of π .

Foundation: π = ǫ (empty path)

Then:

[[π ]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I [start]

162



Proof: Induction on the length of π .

Foundation: π = ǫ (empty path)

Then:

[[π ]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I [start]

Step: π = π
′k for k = (u, _, v) edge.

163



Proof: Induction on the length of π .

Foundation: π = ǫ (empty path)

Then:

[[π ]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I [start]

Step: π = π
′k for k = (u, _, v) edge.

Then:

[[π ′]]♯ d0 ⊑ I [u] by I.H. for π

==⇒ [[π ]]♯ d0 = [[k]]♯ ([[π ′]]♯ d0)

⊑ [[k]]♯ (I [u]) since [[k]]♯ monotonic

⊑ I [v] since I solution :-))

164



Disappointment:

Are solutions of the constraint system just upper bounds ???

165



Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes :-(

166



Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes :-(

With the notable exception when all functions [[k]]♯ are

distributive ... :-)

167



The function f : D1 → D2 is called

• distributive, if f (
⊔
X) =

⊔
{ f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

168



The function f : D1 → D2 is called

• distributive, if f (
⊔
X) =

⊔
{ f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples:

• f x = x ∩ a ∪ b for a, b ⊆ U .

169



The function f : D1 → D2 is called

• distributive, if f (
⊔
X) =

⊔
{ f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples:

• f x = x ∩ a ∪ b for a, b ⊆ U .

Strictness: f ∅ = a ∩ ∅ ∪ b = b = ∅ whenever b = ∅ :-(

170



The function f : D1 → D2 is called

• distributive, if f (
⊔
X) =

⊔
{ f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples:

• f x = x ∩ a ∪ b for a, b ⊆ U .

Strictness: f ∅ = a ∩ ∅ ∪ b = b = ∅ whenever b = ∅ :-(

Distributivity:

f (x1 ∪ x2) = a ∩ (x1 ∪ x2) ∪ b

= a ∩ x1 ∪ a ∩ x2 ∪ b

= f x1 ∪ f x2 :-)

171



• D1 = D2 = N∪ {∞}, inc x = x + 1

172



• D1 = D2 = N∪ {∞}, inc x = x + 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

173



• D1 = D2 = N∪ {∞}, inc x = x + 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔
X) =

⊔
{x + 1 | x ∈ X} for

∅ 6= X :-)

174



• D1 = D2 = N∪ {∞}, inc x = x + 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔
X) =

⊔
{x + 1 | x ∈ X} for

∅ 6= X :-)

• D1 = (N∪ {∞})2, D2 = N∪ {∞}, f (x1, x2) = x1 + x2

175



• D1 = D2 = N∪ {∞}, inc x = x + 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔
X) =

⊔
{x + 1 | x ∈ X} for

∅ 6= X :-)

• D1 = (N∪ {∞})2, D2 = N∪ {∞}, f (x1, x2) = x1 + x2 :

Strictness: f ⊥ = 0 + 0 = 0 :-)

176



• D1 = D2 = N∪ {∞}, inc x = x + 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔
X) =

⊔
{x + 1 | x ∈ X} for

∅ 6= X :-)

• D1 = (N∪ {∞})2, D2 = N∪ {∞}, f (x1, x2) = x1 + x2 :

Strictness: f ⊥ = 0 + 0 = 0 :-)

Distributivity:

f ((1, 4) ⊔ (4, 1)) = f (4, 4) = 8

6= 5 = f (1, 4) ⊔ f (4, 1) :-)

177



Remark:

If f : D1 → D2 is distributive, then also monotonic :-)

178



Remark:

If f : D1 → D2 is distributive, then also monotonic :-)

Obviously: a ⊑ b iff a ⊔ b = b.

179



Remark:

If f : D1 → D2 is distributive, then also monotonic :-)

Obviously: a ⊑ b iff a ⊔ b = b.

From that follows:

f b = f (a ⊔ b)

= f a ⊔ f b

==⇒ f a ⊑ f b :-)

180



Assumption: all v are reachable from start .

181



Assumption: all v are reachable from start .

Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I [v]

for all v .

182



Gary A. Kildall (1942-1994).

Has developed the operating system CP/M and GUIs for PCs.

183



Assumption: all v are reachable from start .

Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I [v]

for all v .

184



Assumption: all v are reachable from start .

Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I [v]

for all v .

Proof:

It suffices to prove that I∗ is a solution :-)

For this, we show that I∗ satisfies all constraints :-))

185



(1) We prove for start :

I∗[start] =
⊔
{[[π ]]♯ d0 | π : start →∗ start}

⊒ [[ǫ]]♯ d0

⊒ d0 :-)

186



(1) We prove for start :

I∗[start] =
⊔
{[[π ]]♯ d0 | π : start →∗ start}

⊒ [[ǫ]]♯ d0

⊒ d0 :-)

(2) For every k = (u, _, v) we prove:

I∗[v] =
⊔
{[[π ]]♯ d0 | π : start →∗ v}

⊒
⊔
{[[π ′k]]♯ d0 | π

′ : start →∗ u}

=
⊔
{[[k]]♯ ([[π ′]]♯ d0) | π

′ : start →∗ u}

= [[k]]♯ (
⊔
{[[π ′]]♯ d0 | π

′ : start →∗ u})

= [[k]]♯ (I∗[u])

since {π ′ | π
′ : start →∗ u} is non-empty :-)

187



Warning:

• Reachability of all program points cannot be abandoned!

Consider:

0 1 2
inc7

where D = N∪ {∞}

188



Warning:

• Reachability of all program points cannot be abandoned!

Consider:

0 1 2
inc7

where D = N∪ {∞}

Then:

I [2] = inc 0 = 1

I∗[2] =
⊔
∅ = 0

189



Warning:

• Reachability of all program points cannot be abandoned!

Consider:

0 1 2
inc7

where D = N∪ {∞}

Then:

I [2] = inc 0 = 1

I∗[2] =
⊔
∅ = 0

• Unreachable program points can always be thrown away :-)

190



Summary and Application:

→ The effects of edges of the analysis of availability of

expressions are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

191



Summary and Application:

→ The effects of edges of the analysis of availability of

expressions are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

→ If all effects of edges are distributive, then the MOP can be

computed by means of the constraint system and

RR-iteration. :-)

192



Summary and Application:

→ The effects of edges of the analysis of availability of

expressions are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

→ If all effects of edges are distributive, then the MOP can be

computed by means of the constraint system and

RR-iteration. :-)

→ If not all effects of edges are distributive, then RR-iteration

for the constraint system at least returns a safe upper bound

to the MOP :-)

193



1.2 Removing Assignments to Dead Variables

Example:

1 : x = y + 2;

2 : y = 5;

3 : x = y + 3;

The value of x at program points 1, 2 is over-written before

it can be used.

Therefore, we call the variable x dead at these program points

:-)

194



Note:

→ Assignments to dead variables can be removed ;-)

→ Such inefficiencies may originate from other

transformations.

195



Note:

→ Assignments to dead variables can be removed ;-)

→ Such inefficiencies may originate from other

transformations.

Formal Definition:

The variable x is called live at u along the path π starting

at u relative to a set X of variables either:

if x ∈ X and π does not contain a definition of x; or:

if π can be decomposed into: π = π1 k π2 such that:

• k is a use of x ; and

• π1 does not contain a definition of x.

196



u
π1

k

Thereby, the set of all defined or used variables at an edge

k = (_, lab, _) is defined by:

lab used defined

; ∅ ∅

Pos (e) Vars (e) ∅

Neg (e) Vars (e) ∅

x = e; Vars (e) {x}

x = M[e]; Vars (e) {x}

M[e1] = e2; Vars (e1) ∪Vars (e2) ∅

197



A variable x which is not live at u along π (relative to X)

is called dead at u along π (relative to X).

Example:

10 2 3

x = y + 2; y = 5; x = y + 3;

where X = ∅. Then we observe:

live dead

0 {y} {x}

1 ∅ {x, y}

2 {y} {x}

3 ∅ {x, y}

198



The variable x is live at u (relative to X) if x is live at u

along some path to the exit (relative to X). Otherwise, x is

called dead at u (relative to X).

199



The variable x is live at u (relative to X) if x is live at u

along some path to the exit (relative to X). Otherwise, x is

called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every

u ???

200



The variable x is live at u (relative to X) if x is live at u

along some path to the exit (relative to X). Otherwise, x is

called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every

u ???

Idea:

For every edge k = (u, _, v) , define a function [[k]]♯ which

transforms the set of variables which are live at v into the set of

variables which are live at u ...

201


