Let $\mathbb{L}=2^{\text {Vars }}$.
For $k=\left(_, l a b,{ }_{-}\right)$, define $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ by:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} L & =L \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket x=M[e] ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

Let $\mathbb{L}=2^{\text {Vars }}$.
For $k=\left(_, l a b, _\right)$, define $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ by:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} L & =L \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket x=M[e] ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

$\llbracket k \rrbracket^{\sharp}$ can again be composed to the effects of $\llbracket \pi \rrbracket^{\sharp}$ of paths $\pi=k_{1} \ldots k_{r} \quad$ by:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{1} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{r} \rrbracket^{\sharp}
$$

We verify that these definitions are meaningful :-)

The set of variables which are live at u then is given by:

$$
\mathcal{L}^{*}[u]=\bigcup\left\{\llbracket \pi \rrbracket^{\sharp} X \mid \pi: u \rightarrow^{*} \text { stop }\right\}
$$

... literally:

- The paths start in u :-)
\Longrightarrow As partial ordering for \mathbb{L} we use $\sqsubseteq=\subseteq$.
- The set of variables which are live at program exit is given by the set $X \quad$:-)

Transformation 2:

$\bigcap_{0} x=M[e]$;

Correctness Proof:

$\rightarrow \quad$ Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π, then $\llbracket \pi \rrbracket^{\sharp} L \quad$ is the set of variables which are live at the beginning of $\pi \quad$:-)
\rightarrow Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)
$\rightarrow \quad$ Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

Computation of the sets $\quad \mathcal{L}^{*}[u]$:
(1) Collecting constraints:

$$
\begin{array}{lllll}
\mathcal{L}[\text { stop }] & \supseteq X & & \\
\mathcal{L}[u] & \supseteq \llbracket k \rrbracket^{\sharp}(\mathcal{L}[v]) & k=(u,-v) & \text { edge }
\end{array}
$$

(2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals $\quad \mathcal{L}^{*}$ since all $\llbracket k \rrbracket^{\sharp}$ are distributive :-))

Computation of the sets $\quad \mathcal{L}^{*}[u]$:
(1) Collecting constraints:

$$
\begin{array}{lllll}
\mathcal{L}[\text { stop }] & \supseteq X & \\
\mathcal{L}[u] & \supseteq \llbracket k \rrbracket^{\sharp}(\mathcal{L}[v]) & k=(u,-v) & \text { edge }
\end{array}
$$

(2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals $\quad \mathcal{L}^{*}$ since all $\llbracket k \rrbracket^{\sharp}$ are distributive :-))

Warning: The information is propagated backwards !!

Example:

$$
\begin{aligned}
\mathcal{L}[0] & \supseteq(\mathcal{L}[1] \backslash\{x\}) \cup\{I\} \\
\mathcal{L}[1] & \supseteq \mathcal{L}[2] \backslash\{y\} \\
\mathcal{L}[2] & \supseteq(\mathcal{L}[6] \cup\{x\}) \cup(\mathcal{L}[3] \cup\{x\}) \\
\mathcal{L}[3] & \supseteq(\mathcal{L}[4] \backslash\{y\}) \cup\{x, y\} \\
\mathcal{L}[4] & \supseteq(\mathcal{L}[5] \backslash\{x\}) \cup\{x\} \\
\mathcal{L}[5] & \supseteq \mathcal{L}[2] \\
\mathcal{L}[6] & \supseteq \mathcal{L}[7] \cup\{y, R\} \\
\mathcal{L}[7] & \supseteq \emptyset
\end{aligned}
$$

Example:

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further variables:

Re-analyzing the program is inconvenient

Idea: Analyze true liveness!
x is called truely live at u along a path π (relative to X), either
if $x \in X, \quad \pi$ does not contain a definition of $x ;$ or
if π can be decomposed into $\pi=\pi_{1} k \pi_{2}$ such that:

- k is a true use of x;
- π_{1} does not contain any definition of x.

The set of truely used variables at an edge $k=(, l a b, v)$ is defined as:

$l a b$	truely used
$;$	\emptyset
$\operatorname{Pos}(e)$	$\operatorname{Vars}(e)$
$\operatorname{Neg}(e)$	Vars (e)
$x=e ;$	$\operatorname{Vars}(e) \quad(*)$
$x=M[e] ;$	$\operatorname{Vars}(e) \quad(*)$
$M\left[e_{1}\right]=e_{2} ;$	$\operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)$

$(*)$ - given that x is truely live at $v \quad:-$

Example:

Example:

Example:

Example:

Example:

The Effects of Edges:

$$
\begin{array}{llr}
\llbracket ; \rrbracket^{\sharp} L & =L \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup & \operatorname{Vars}(e) \\
\llbracket x=M[e] ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup & \operatorname{Vars}(e) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

The Effects of Edges:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} L & =L \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup(x \in L) ? \operatorname{Vars}(e): \emptyset \\
\llbracket x=M[e] ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup(x \in L) ? \operatorname{Vars}(e): \emptyset \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D}=2^{u}, f y=(u \in y) ? b: \emptyset$ We verify:

$$
\begin{aligned}
f\left(y_{1} \cup y_{2}\right) & =\left(u \in y_{1} \cup y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1} \vee u \in y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1}\right) ? b: \emptyset \cup\left(u \in y_{2}\right) ? b: \emptyset \\
& =f y_{1} \cup f y_{2}
\end{aligned}
$$

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D}=2^{u}, f y=(u \in y) ? b: \emptyset$ We verify:

$$
\begin{aligned}
f\left(y_{1} \cup y_{2}\right) & =\left(u \in y_{1} \cup y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1} \vee u \in y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1}\right) ? b: \emptyset \cup\left(u \in y_{2}\right) ? b: \emptyset \\
& =f y_{1} \cup f y_{2}
\end{aligned}
$$

\Longrightarrow the constraint system yields the MOP :-))

- True liveness detects more superfluous assignments than repeated liveness !!!

- True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:

- True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless
:-(

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless
Instead of y, we could also store $T \quad:-)$

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless
Instead of y, we could also store $T \quad:-)$

1.3 Removing Superfluous Moves

Example:

Advantage: Now, y has become dead :-))

1.3 Removing Superfluous Moves

Example:

Advantage: Now, y has become dead :-))

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V}=$ Expr $\rightarrow 2^{\text {Vars }} \ldots$

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V}=\operatorname{Expr} \rightarrow 2^{\text {Vars }}$ and define:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} V & =V \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} V e^{\prime} & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} V e^{\prime}= \begin{cases}\emptyset & \text { if } e^{\prime}=e \\
V e^{\prime} & \text { otherwise }\end{cases}
\end{array}
$$

$$
\begin{aligned}
& \llbracket x=c ; \mathbb{\sharp}^{\sharp} V e^{\prime}= \begin{cases}(V c) \cup\{x\} & \text { if } e^{\prime}=c \\
\left(V e^{\prime}\right) \backslash\{x\} & \text { otherwise }\end{cases} \\
& \llbracket x=y ; \rrbracket^{\sharp} V e= \begin{cases}(V e) \cup\{x\} & \text { if } y \in V e \\
(V e) \backslash\{x\} & \text { otherwise }\end{cases} \\
& \llbracket x=e ; \rrbracket^{\sharp} V e^{\prime} \quad= \begin{cases}\{x\} & \text { if } e^{\prime}=e \\
\left(V e^{\prime}\right) \backslash\{x\} & \text { otherwise }\end{cases} \\
& \llbracket x=M[c] ; \rrbracket \rrbracket^{\sharp} V e^{\prime}=\left(V e^{\prime}\right) \backslash\{x\} \\
& \llbracket x=M[y] ;]^{\sharp} V e^{\prime}=\left(V e^{\prime}\right) \backslash\{x\} \\
& \llbracket x=M[e] ; \rrbracket^{\sharp} V e^{\prime}= \begin{cases}\emptyset & \text { if } e^{\prime}=e \\
\left(V e^{\prime}\right) \backslash\{x\} & \text { otherwise }\end{cases} \\
& \text { // analogously for the diverse stores }
\end{aligned}
$$

In the Example:

$$
\{x+1 \mapsto\{T\}\}, 2
$$

In the Example:

$$
\{x+1 \mapsto\{T\}\}
$$

$\rightarrow \quad$ We propagate information in forward direction :-)
At start, $V_{0} e=\emptyset$ for all e;
$\rightarrow \quad \sqsubseteq \subseteq \mathbb{V} \times \mathbb{V} \quad$ is defined by:

$$
V_{1} \sqsubseteq V_{2} \quad \text { iff } \quad V_{1} e \supseteq V_{2} e \quad \text { for all } e
$$

Observation:

The new effects of edges are distributive:

To show this, we consider the functions:
(1) $f_{1}^{x} V e=(V e) \backslash\{x\}$
(2) $\left.f_{2}^{e, a} V=V \oplus\{e \mapsto a\}\right\}$
(3) $f_{3}^{x, y} V e=(y \in V e) ?(V e \cup\{x\}):((V e) \backslash\{x\})$

Obviously, we have:

$$
\begin{array}{ll}
\llbracket x=e ; \rrbracket^{\sharp} & =f_{2}^{e,\{x\}} \circ f_{1}^{x} \\
\llbracket x=y ; \rrbracket^{\sharp} & =f_{3}^{x, y} \\
\llbracket x=M[e] ; \rrbracket^{\sharp} & =f_{2}^{e, \sharp} \circ f_{1}^{x}
\end{array}
$$

By closure under composition, the assertion follows :-))
(1) For $f V e=(V e) \backslash\{x\}$, we have:

$$
\begin{aligned}
f\left(V_{1} \sqcup V_{2}\right) e & =\left(\left(V_{1} \sqcup V_{2}\right) e\right) \backslash\{x\} \\
& =\left(\left(V_{1} e\right) \cap\left(V_{2} e\right)\right) \backslash\{x\} \\
& =\left(\left(V_{1} e\right) \backslash\{x\}\right) \cap\left(\left(V_{2} e\right) \backslash\{x\}\right) \\
& =\left(f V_{1} e\right) \cap\left(f V_{2} e\right) \\
& \left.=\left(f V_{1} \sqcup f V_{2}\right) e \quad:-\right)
\end{aligned}
$$

(2) For $f V=V \oplus\{e \mapsto a\}$, we have:

$$
\begin{aligned}
f\left(V_{1} \sqcup V_{2}\right) e^{\prime} & =\left(\left(V_{1} \sqcup V_{2}\right) \oplus\{e \mapsto a\}\right) e^{\prime} \\
& =\left(V_{1} \sqcup V_{2}\right) e^{\prime} \\
& =\left(f V_{1} \sqcup f V_{2}\right) e^{\prime} \quad \text { given that } e \neq e^{\prime} \\
f\left(V_{1} \sqcup V_{2}\right) e & =\left(\left(V_{1} \sqcup V_{2}\right) \oplus\{e \mapsto a\}\right) e \\
& =a \\
& =\left(\left(V_{1} \oplus\{e \mapsto a\}\right) e\right) \cap\left(\left(V_{2} \oplus\{e \mapsto a\}\right) e\right) \\
& \left.=\left(f V_{1} \sqcup f V_{2}\right) e \quad:-\right)
\end{aligned}
$$

(3) For $f V e=(y \in V e)$? $(V e \cup\{x\}):((V e) \backslash\{x\})$, we have:

$$
\begin{aligned}
f\left(V_{1} \sqcup V_{2}\right) e= & \left(\left(\left(V_{1} \sqcup V_{2}\right) e\right) \backslash\{x\}\right) \cup\left(y \in\left(V_{1} \sqcup V_{2}\right) e\right) ?\{x\}: \emptyset \\
= & \left(\left(V_{1} e \cap V_{2} e\right) \backslash\{x\}\right) \cup\left(y \in\left(V_{1} e \cap V_{2} e\right)\right) ?\{x\}: \emptyset \\
= & \left(\left(V_{1} e \cap V_{2} e\right) \backslash\{x\}\right) \cup \\
& \left(\left(y \in V_{1} e\right) ?\{x\}: \emptyset\right) \cap\left(\left(y \in V_{2} e\right) ?\{x\}: \emptyset\right) \\
= & \left(\left(\left(V_{1} e\right) \backslash\{x\}\right) \cup\left(y \in V_{1} e\right) ?\{x\}: \emptyset\right) \cap \\
& \left(\left(\left(V_{2} e\right) \backslash\{x\}\right) \cup\left(y \in V_{2} e\right) ?\{x\}: \emptyset\right) \\
= & \left.\left(f V_{1} \sqcup f V_{2}\right) e \quad:-\right)
\end{aligned}
$$

