Let L =2"rm,
For k= (_lab,_),define [k]* = [lab]* by:

[IF L = L

[Pos(e)]*L = [Neg(e)[FL = LU Vars(e)
[x = ¢]*L = (L\{x}) U Vars(e)

[x = M[e|;]FL = (L\{x})U Vars(e)

[Mlei] = ex;]*L = LU Vars(e;) U Vars(e,)

202

Let L =2"rm,
For k= (_lab,_),define [k]* = [lab]* by:

[IF L = L

[Pos(e)]*L = [Neg(e)][FL = LU Vars(e)
[x = ¢]*L = (L\{x}) U Vars(e)

[x = M[e|;]FL = (L\{x})U Vars(e)

[Mlei] = ex;]*L = LU Vars(e;) U Vars(e,)

[k]* can again be composed to the effects of [7]]* of paths
m=k ...k by:

[7]* = [ki]?o... 0 [k]*

203

We verify that these definitions are meaningful :-)

x=y+2; x=vy+2;, Mly| =x;

©

y=>5

204

We verify that these definitions are meaningful :-)

x=y+2; x=vy+2;, Mly| =x;

©

y=>5

205

We verify that these definitions are meaningful :-)

x=y+2; x=vy+2;, Mly| =x;

©

y=>5

206

We verify that these definitions are meaningful :-)

x=y+2; x=vy+2;, Mly| =x;

©

{y} {x, v} 0

y=>5

207

We verify that these definitions are meaningful :-)

x=y+2 y=5 x=y+2; Mly]=x

©

0 {y} {x,y} 0

208

We verify that these definitions are meaningful :-)

x=y+2 y=5 x=y+2; Mly]=x

©

{y} 0 {y} {x, v} 0

209

The set of variables which are live at u then is given by:

Lu] = (Jn]* X | :u—* stop}

.. literally:

e Thepathsstartin u :-)
——> As partial ordering for L weuse [=C.

e The set of variables which are live at program exit is given by
theset X :-)

210

Transformation 2:

211

Correctness Proof:

— Correctness of the effects of edges: If L is the set of
variables which are live at the exit of the path 7, then
[7]* L is the set of variables which are live at the beginning
of m :-)

— Correctness of the transformation along a path: If the value
of a variable is accessed, this variable is necessarily live. The
value of dead variables thus is irrelevant :-)

— Correctness of the transformation: In any execution of the
transformed programs, the live variables always receive the
same values :-))

212

Computation of the sets L*[u] :

(1) Collecting constraints:

X
[k (L[0]) k= (u,_,v) edge

L [stop]
L|u]

1y

(2) Solving the constraint system by means of RR iteration.

Since I is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program
point, then the smallest solution £ of the constraint
system equals L* sinceall [k are distributive :-))

213

Computation of the sets L*[u] :

(1) Collecting constraints:

X
[k (L[0]) k= (u,_,v) edge

L [stop]
L|u]

1y

(2) Solving the constraint system by means of RR iteration.

Since I is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program
point, then the smallest solution £ of the constraint
system equals L* sinceall [k are distributive :-))

Warning: The information is propagated backwards !!!

214

Example:

S OO L B L

215

S N N =)

IO IUAN VN VRN U AN ORI,

=

T\{xp) U}

\y}

JU{x}) U(L[BJU {x})
Ny Uy vy

\xp) U {x}

N h
0 =
‘g1l s O N,

=

N

= DD
C
——
=
~
——

Example:

{x,y, R} | dito

S = W = O NN O
——
=
NS
=
——

216

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further
variables:

x=y+1;
(2

z = 2% X;
(3

MIR] = y;

217

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further
variables:

218

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further
variables:

x=y+1

219

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further
variables:

(D yR

x=y+1

220

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further
variables:

221

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further
variables:

(D yR (D R

222

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further
variables:

(D yR (D R

223

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

x iscalled truely liveat u alongapath 7 (relative to X),
either

if x € X, mdoesnotcontain a definition of x; or
it 7 canbedecomposed into 7 = 7 km, such that:

e k isatrueuseof x;

e m doesnot contain any definition of x.

224

O——+@O—*——O~0—0O

The set of truely used variables at an edge k = (_,lab,v) is
defined as:

lab truely used

; 0

Pos (e) Vars (e)

Neg (e) Vars (e)

X =e; Vars (e) (%)
x = Mlel; Vars (e) ()
Mle,| = e; Vars(e,) U Vars(es)

(%) —giventhat x istruelyliveat v :-)

225

226

Example:

227

Example:

228

Example:

229

Example:

230

The Effects of Edges:

[IF L = L

[Pos(e)]* L = [Neg(e)]*'L = LU Vars(e)
[x =¢]* L = (L\{x})U Vars(e)
[x = Mle;]FL = (L\{x})U Vars(e)
[Mle1] = ex;]*L = LU Vars(e;) U Vars(e)

231

The Effects of Edges:

[IFL = L

[Pos(e)]* L = [Neg(e)]*L = LU Vars(e)
[x =¢]* L = (L\{x})U (x € L)?Vars(e): (
[x = Mle|;]*L = (L\{x})U (x € L)? Vars(e):
[M[e)] = e;]*L = LU Vars(e,) U Vars(e,)

232

Note:

o The effects of edges for truely live variables are more
complicated than for live variables :-)

e Nonetheless, they are distributive !!

233

Note:

o The effects of edges for truely live variables are more
complicated than for live variables :-)

e Nonetheless, they are distributive !!

To see this, consider for D =2"Y, fy=(uey)?b:) We
verify:

frhUy) = (weyUy)?b: ()
(uEy1Vu€y2)?b: @
(wey)?b: DU(uey)?b: 0

= fynUfy

234

Note:

o The effects of edges for truely live variables are more
complicated than for live variables :-)

e Nonetheless, they are distributive !!

To see this, consider for D =2"Y, fy=(uey)?b:) We
verify:

f(nUy) = (ueyUy)?b: 0
(uEy1Vu€y2)?b: @
(wey)?b: DU(uey)?b: 0

= fynUfy

—— the constraint system yields the MOP :-))

235

True liveness detects more superfluous assignments than
repeated liveness !!!

x=x—1;

236

True liveness detects more superfluous assignments than
repeated liveness !!!

Liveness:

{X} X:X—l,'

237

e True liveness detects more superfluous assignments than
repeated liveness !!!

True Liveness:

0 x=x—1;

238

1.3 Removing Superfluous Moves

Example:
(D
T=x+1;
(2)
y=1
©
M[R]| =y;

This variable-variable assignment is obviously useless :-(

239

1.3 Removing Superfluous Moves

Example:
©
T=x+1;
(2
y=1T
©
M[R] = y;

This variable-variable assignment is obviously useless :-(

Instead of 1, we could also store T :-)

240

1.3 Removing Superfluous Moves

Example:
© ©
T=x+1; T'=x+1,
@ @
y=17; ‘ y=17;
© ©
MIR] = y; M[R] = T;

This variable-variable assighment is obviously useless

Instead of 1, we could also store T :-)

241

1.3 Removing Superfluous Moves

Example:
(D (D
T=x+1 T=x+1;
(2) (2
y=T,; —) y=T
© ©
M[R] =y M[R] =T

Advantage: Now, vy hasbecome dead :-))

242

1.3 Removing Superfluous Moves

Example:
(D (D
T=x+1 T=x+1; T=x+1;
(2) (2
y=71T; ‘ y=17; ‘ ;
© © ©
MI[R] = y; M[R] = T; M[R] = T;

® ® ©)

Advantage: Now, vy hasbecome dead :-))

243

Idea:

For each expression, we record the variable which currently
contains its value :-)

We use: 'V = Expr — 2V

244

Idea:

For each expression, we record the variable which currently
contains its value :-)

We use: V = Expr — 2""* and define:

LIV =V

[Pos(e)]!Ve = [Neg(e)]!Ve = {(Z) ife/ =e

Ve otherwise

245

(

e — ot Ve _ (Veo)u{x} if ¢ =c
(Ve)\{x} otherwise
e — i Ve _ (Ve)u{x} if yeVe
| (Ve)\{x} otherwise

= e Ve _ [{x} if ¢ =e
| (Vé)\{x} otherwise

MlcJFve = (Ve)\{x}
Mly[JPve = (Ve)\{x}

0 ife! =e
il V4 —
MiebEY { (Ve)\{x} otherwise

// analogously for the diverse stores

246

In the Example:

0@
(x+1-{TH @

T=x+1;

{x+1—{y,T}} (3)
1= {11 ()

247

In the Example:

0@
T=x+1;
{x+1—{T}} e
y=T
{x+1={y,T}} (3
M[R] =y

x+1— {111} (3)

— We propagate information in forward direction :-)
At start, Vye=1) forall e;
— L C VXV isdefined by:

V1 E V2 iff V1 e 2 V2 e forall e

248

Observation:
The new effects of edges are distributive:

To show this, we consider the functions:

1) fiVe=(Ve)\{x}

2) f,'V=V&{er—at}

B) fi"Ve=(yeVe)?2(Veu{x}):((Ve)\{x})

Obviously, we have:

x=¢]t = fof
x=y]t = £
[x=Mlel;]* = fPofr

By closure under composition, the assertion follows

249

(1) For fVe=(Ve)\{x}, wehave:

f(VitVy)e (ViU Va)e)\{x}

((Vie)n (Vae))\{x}

= ((Vie)\{x}) N ((Vae)\{x})
(fVie)n(f Vae)

(f

V1 |_|fV2> I-)

250

(2) For fV =V®{ewr a}, wehave:

f(ViuVvy)e

(ViuVy)@{e—a})e
— (V1 L Vz) e’
= (fWhufVy)e giventhat e # ¢

f(Vl |_|V2)€

((V1 L Vz) D {6 — a}) e

= (i@ {e—ap)e)N((Va@ e —aj)e)
(f V1 |_|fV2) e Z-)

251

(3) For fVe=(yeVe)?(VeU{x}):((Ve)\{x}), we have:

f(V1 L Vz)e

(ViuVa)e)\{x}) U (y € (Vi Va)e) 2 {x}:0
VieNnVyae)\{x}H)U(ye(VienVye))?2{x}:0
VieNnVye)\{x}) U
yeVie)?{x}:0)Nn((y € Vye)?2{x}:0)
(Vie)\Max}) Uy eVie)?{x}:0) N
(Vae)\{x}) U (y € Vae) 2 {x}:0)
fVilfVye :-)

(
(

(
(
((
((
((
((
(

252

