
Let L = 2Vars .

For k = (_, lab, _) , define [[k]]♯ = [[lab]]♯ by:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪Vars(e)

[[x = M[e];]]♯ L = (L\{x}) ∪Vars(e)

[[M[e1] = e2;]]♯ L = L ∪Vars(e1) ∪Vars(e2)

202

Let L = 2Vars .

For k = (_, lab, _) , define [[k]]♯ = [[lab]]♯ by:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪Vars(e)

[[x = M[e];]]♯ L = (L\{x}) ∪Vars(e)

[[M[e1] = e2;]]♯ L = L ∪Vars(e1) ∪Vars(e2)

[[k]]♯ can again be composed to the effects of [[π]]♯ of paths

π = k1 . . . kr by:

[[π]]♯ = [[k1]]
♯ ◦ . . . ◦ [[kr]]

♯

203

We verify that these definitions are meaningful :-)

4 5321

M[y] = x;x = y + 2;y = 5;x = y + 2;

204

We verify that these definitions are meaningful :-)

4 5321

M[y] = x;x = y + 2;y = 5;x = y + 2;

∅

205

We verify that these definitions are meaningful :-)

4 5321

M[y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}

206

We verify that these definitions are meaningful :-)

4 5321

M[y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}

207

We verify that these definitions are meaningful :-)

4 5321

M[y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}∅

208

We verify that these definitions are meaningful :-)

4 5321

M[y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}∅{y}

209

The set of variables which are live at u then is given by:

L∗[u] =
⋃

{[[π]]♯ X | π : u →∗ stop}

... literally:

• The paths start in u :-)

==⇒ As partial ordering for L we use ⊑ = ⊆ .

• The set of variables which are live at program exit is given by

the set X :-)

210

Transformation 2:

;

v v

x = e;

x 6∈ L∗[v]

;

v v

x 6∈ L∗[v]

x = M[e];

211

Correctness Proof:

→ Correctness of the effects of edges: If L is the set of

variables which are live at the exit of the path π , then

[[π]]♯ L is the set of variables which are live at the beginning

of π :-)

→ Correctness of the transformation along a path: If the value

of a variable is accessed, this variable is necessarily live. The

value of dead variables thus is irrelevant :-)

→ Correctness of the transformation: In any execution of the

transformed programs, the live variables always receive the

same values :-))

212

Computation of the sets L∗[u] :

(1) Collecting constraints:

L[stop] ⊇ X

L[u] ⊇ [[k]]♯ (L[v]) k = (u, _, v) edge

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program

point, then the smallest solution L of the constraint

system equals L∗ since all [[k]]♯ are distributive :-))

213

Computation of the sets L∗[u] :

(1) Collecting constraints:

L[stop] ⊇ X

L[u] ⊇ [[k]]♯ (L[v]) k = (u, _, v) edge

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program

point, then the smallest solution L of the constraint

system equals L∗ since all [[k]]♯ are distributive :-))

Warning: The information is propagated backwards !!!

214

Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x = M[I];

0

M[R] = y;

L[0] ⊇ (L[1]\{x}) ∪ {I}

L[1] ⊇ L[2]\{y}

L[2] ⊇ (L[6] ∪ {x}) ∪ (L[3] ∪ {x})

L[3] ⊇ (L[4]\{y}) ∪ {x, y}

L[4] ⊇ (L[5]\{x}) ∪ {x}

L[5] ⊇ L[2]

L[6] ⊇ L[7] ∪ {y, R}

L[7] ⊇ ∅

215

Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x = M[I];

0

M[R] = y;

1 2

7 ∅

6 {y, R}

2 {x, y, R} dito

5 {x, y, R}

4 {x, y, R}

3 {x, y, R}

1 {x, R}

0 {I, R}

216

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

∅

217

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

∅

y, R

218

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

∅

y, R

x, y, R

219

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

y, R

∅

y, R

x, y, R

220

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

y, R

∅

y, R

x, y, R

x = y + 1;

;

M[R] = y;

221

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

y, R

∅

y, R

x, y, R

x = y + 1;

;

M[R] = y;

y, R

∅

y, R

y, R

222

The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

y, R

∅

y, R

x, y, R

x = y + 1;

;

M[R] = y;

y, R

∅

y, R

y, R

;

;

M[R] = y;

223

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

x is called truely live at u along a path π (relative to X),

either

if x ∈ X , π does not contain a definition of x; or

if π can be decomposed into π = π1 k π2 such that:

• k is a true use of x ;

• π1 does not contain any definition of x.

224

u v
kπ2

The set of truely used variables at an edge k = (_, lab, v) is

defined as:

lab truely used

; ∅

Pos (e) Vars (e)

Neg (e) Vars (e)

x = e; Vars (e) (∗)

x = M[e]; Vars (e) (∗)

M[e1] = e2; Vars(e1) ∪Vars(e2)

(∗) – given that x is truely live at v :-)

225

Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

∅

226

Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

∅

y, R

227

Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

∅

y, R

y, R

228

Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

y, R

∅

y, R

y, R

229

Example:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M[R] = y;

;

;

M[R] = y;

y, R

∅

y, R

y, R

230

The Effects of Edges:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[x = M[e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M[e1] = e2;]]♯ L = L ∪Vars(e1) ∪Vars(e2)

231

The Effects of Edges:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[x = M[e];]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[M[e1] = e2;]]♯ L = L ∪Vars(e1) ∪Vars(e2)

232

Note:

• The effects of edges for truely live variables are more

complicated than for live variables :-)

• Nonetheless, they are distributive !!

233

Note:

• The effects of edges for truely live variables are more

complicated than for live variables :-)

• Nonetheless, they are distributive !!

To see this, consider for D = 2U , f y = (u ∈ y) ? b : ∅ We

verify:

f (y1 ∪ y2) = (u ∈ y1 ∪ y2) ? b : ∅

= (u ∈ y1 ∨ u ∈ y2) ? b : ∅

= (u ∈ y1) ? b : ∅ ∪ (u ∈ y2) ? b : ∅

= f y1 ∪ f y2

234

Note:

• The effects of edges for truely live variables are more

complicated than for live variables :-)

• Nonetheless, they are distributive !!

To see this, consider for D = 2U , f y = (u ∈ y) ? b : ∅ We

verify:

f (y1 ∪ y2) = (u ∈ y1 ∪ y2) ? b : ∅

= (u ∈ y1 ∨ u ∈ y2) ? b : ∅

= (u ∈ y1) ? b : ∅ ∪ (u ∈ y2) ? b : ∅

= f y1 ∪ f y2

==⇒ the constraint system yields the MOP :-))

235

• True liveness detects more superfluous assignments than

repeated liveness !!!

True Liveness:

x = x− 1;

;

236

• True liveness detects more superfluous assignments than

repeated liveness !!!

True Liveness:

x = x− 1;

;

∅

{x}

237

• True liveness detects more superfluous assignments than

repeated liveness !!!

True Liveness:

x = x− 1;

;

∅

∅

238

1.3 Removing Superfluous Moves

Example:

2

3

1

4

T = x + 1;

y = T;

M[R] = y;

This variable-variable assignment is obviously useless :-(

239

1.3 Removing Superfluous Moves

Example:

2

3

1

4

T = x + 1;

y = T;

M[R] = y;

This variable-variable assignment is obviously useless :-(

Instead of y, we could also store T :-)

240

1.3 Removing Superfluous Moves

Example:

2

3

1

4

2

3

1

4

T = x + 1;

y = T;

M[R] = y;

T = x + 1;

y = T;

M[R] = T;

This variable-variable assignment is obviously useless :-(

Instead of y, we could also store T :-)

241

1.3 Removing Superfluous Moves

Example:

2

3

1

4

2

3

1

4

T = x + 1;

y = T;

M[R] = y;

T = x + 1;

y = T;

M[R] = T;

Advantage: Now, y has become dead :-))

242

1.3 Removing Superfluous Moves

Example:

2

3

1

4

2

3

1

4

2

3

1

4

T = x + 1;

y = T;

M[R] = y;

T = x + 1;

y = T;

M[R] = T;

T = x + 1;

;

M[R] = T;

Advantage: Now, y has become dead :-))

243

Idea:

For each expression, we record the variable which currently

contains its value :-)

We use: V = Expr → 2Vars ...

244

Idea:

For each expression, we record the variable which currently

contains its value :-)

We use: V = Expr → 2Vars and define:

[[;]]♯ V = V

[[Pos(e)]]♯ V e′ = [[Neg(e)]]♯ V e′ =

{

∅ if e′ = e

V e′ otherwise

. . .

245

[[x = c;]]♯ V e′ =

{

(V c) ∪ {x} if e′ = c

(V e′)\{x} otherwise

[[x = y;]]♯ V e =

{

(V e) ∪ {x} if y ∈ V e

(V e)\{x} otherwise

[[x = e;]]♯ V e′ =

{

{x} if e′ = e

(V e′)\{x} otherwise

[[x = M[c];]]♯ V e′ = (V e′)\{x}

[[x = M[y];]]♯ V e′ = (V e′)\{x}

[[x = M[e];]]♯ V e′ =

{

∅ if e′ = e

(V e′)\{x} otherwise

// analogously for the diverse stores

246

In the Example:

2

3

1

4

T = x + 1;

y = T;

M[R] = y;

{x + 1 7→ {T}}

{x + 1 7→ {y, T}}

{x + 1 7→ {y, T}}

∅

247

In the Example:

2

3

1

4

T = x + 1;

y = T;

M[R] = y;

{x + 1 7→ {T}}

{x + 1 7→ {y, T}}

{x + 1 7→ {y, T}}

∅

→ We propagate information in forward direction :-)

At start , V0 e = ∅ for all e;

→ ⊑ ⊆ V×V is defined by:

V1 ⊑ V2 iff V1 e ⊇ V2 e for all e

248

Observation:

The new effects of edges are distributive:

To show this, we consider the functions:

(1) f x1 V e = (V e)\{x}

(2) f e,a2 V = V ⊕ {e 7→ a}}

(3) f
x,y
3 V e = (y ∈ V e) ? (V e ∪ {x}) : ((V e)\{x})

Obviously, we have:

[[x = e;]]♯ = f
e,{x}
2 ◦ f x1

[[x = y;]]♯ = f
x,y
3

[[x = M[e];]]♯ = f e,∅2 ◦ f x1

By closure under composition, the assertion follows :-))

249

(1) For f V e = (V e)\{x}, we have:

f (V1 ⊔V2) e = ((V1 ⊔V2) e)\{x}

= ((V1 e) ∩ (V2 e))\{x}

= ((V1 e)\{x}) ∩ ((V2 e)\{x})

= (f V1 e) ∩ (f V2 e)

= (f V1 ⊔ f V2) e :-)

250

(2) For f V = V ⊕ {e 7→ a}, we have:

f (V1 ⊔V2) e′ = ((V1 ⊔V2)⊕ {e 7→ a}) e′

= (V1 ⊔V2) e′

= (f V1 ⊔ f V2) e′ given that e 6= e′

f (V1 ⊔V2) e = ((V1 ⊔V2)⊕ {e 7→ a}) e

= a

= ((V1 ⊕ {e 7→ a}) e) ∩ ((V2 ⊕ {e 7→ a}) e)

= (f V1 ⊔ f V2) e :-)

251

(3) For f V e = (y ∈ V e) ? (V e ∪ {x}) : ((V e)\{x}), we have:

f (V1 ⊔V2) e = (((V1 ⊔V2) e)\{x}) ∪ (y ∈ (V1 ⊔V2) e) ? {x} : ∅

= ((V1 e ∩V2 e)\{x}) ∪ (y ∈ (V1 e ∩V2 e)) ? {x} : ∅

= ((V1 e ∩V2 e)\{x}) ∪

((y ∈V1 e) ? {x} : ∅) ∩ ((y ∈V2 e) ? {x} : ∅)

= (((V1 e)\{x}) ∪ (y ∈V1 e) ? {x} : ∅) ∩

(((V2 e)\{x}) ∪ (y ∈V2 e) ? {x} : ∅)

= (f V1 ⊔ f V2) e :-)

252

