We conclude:

\rightarrow Solving the constraint system returns the MOP solution :-)
\rightarrow Let \mathcal{V} denote this solution.
If $x \in \mathcal{V}[u] e$, then x at u contains the value of $e-$ which we have stored in T_{e}
\qquad
the access to $\quad x$ can be replaced by the access to $\left.T_{e} \quad:-\right)$

For $\quad V \in \mathbb{V}$, let V^{-}denote the variable substitution with:

$$
V^{-} x= \begin{cases}T_{e} & \text { if } x \in V e \\ x & \text { otherwise }\end{cases}
$$

if $V e \cap V e^{\prime}=\emptyset$ for $e \neq e^{\prime}$. Otherwise: $V^{-} x=x \quad$:-)

Transformation 3:

... analogously for edges with Neg (e)

Transformation 3 (cont.):

Procedure as a whole:

(1) Availability of expressions:

+ removes arithmetic operations
- inserts superfluous moves
(2) Values of variables:
$+\quad$ creates dead variables
(3) (true) liveness of variables:
+ removes assignments to dead variables

Example: a[7]--;

Example: a[7]--;

Example (cont.): a[7]--;

Example (cont.): a[7]--;

1.4 Constant Propagation

Idea:

Execute as much of the code at compile-time as possible!
Example:

$$
\begin{aligned}
& x=7 \\
& \text { if }(x>0) \\
& \quad M[A]=B ;
\end{aligned}
$$

Obviously, x has always the value 7 :-)
Thus, the memory access is always executed :-))
Goal:

Obviously, x has always the value 7 :-)
Thus, the memory access is always executed :-))
Goal:

Generalization: Partial Evaluation

Neil D. Jones, DIKU, Kopenhagen

Idea:

Design an analysis which for every u,

- determines the values which variables definitely have;
- tells whether u can be reached at all :-)

Idea:

Design an analysis which for every u,

- determines the values which variables definitely have;
- tells whether u can be reached at all :-)

The complete lattice is constructed in two steps.
(1) The potential values of variables:

$$
\mathbb{Z}^{\top}=\mathbb{Z} \cup\{\top\} \quad \text { with } \quad x \sqsubseteq y \quad \text { iff } y=\top \text { or } x=y
$$

Warning: \mathbb{Z}^{\top} is not a complete lattice in itself :-(
(2) $\mathbb{D}=\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp}=\left(\right.$ Vars $\left.\rightarrow \mathbb{Z}^{\top}\right) \cup\{\perp\}$
// \perp denotes: "not reachable" :-))

$$
\begin{aligned}
& \text { with } \quad D_{1} \sqsubseteq D_{2} \text { iff } \quad \perp=D_{1} \quad \text { or } \\
& D_{1} x \sqsubseteq D_{2} x \quad(x \in \text { Vars })
\end{aligned}
$$

Remark: \mathbb{D} is a complete lattice :-)

Warning: \mathbb{Z}^{\top} is not a complete lattice in itself :-(
(2) $\mathbb{D}=\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp}=\left(\right.$ Vars $\left.\rightarrow \mathbb{Z}^{\top}\right) \cup\{\perp\}$
// \perp denotes: "not reachable" :-))

$$
\begin{aligned}
& \text { with } \quad D_{1} \sqsubseteq D_{2} \text { iff } \quad \perp=D_{1} \quad \text { or } \\
& D_{1} x \sqsubseteq D_{2} x \quad(x \in \text { Vars })
\end{aligned}
$$

Remark: \mathbb{D} is a complete lattice :-)
Consider $\quad X \subseteq \mathbb{D}$. W.l.o.g., $\quad \perp \notin X$.
Then $X \subseteq$ Vars $\rightarrow \mathbb{Z}^{\top}$.
If $X=\emptyset$, then $\quad \sqcup X=\perp \in \mathbb{D} \quad:-)$

If $X \neq \emptyset$, then $\quad \sqcup X=D$ with

$$
\begin{aligned}
D x & =\sqcup\{f x \mid f \in X\} \\
& =\left\{\begin{array}{ll}
z & \text { if } f x=z \\
\top & \text { otherwise }
\end{array} \quad(f \in X)\right.
\end{aligned}
$$

:-))

If $X \neq \emptyset$, then $\quad \sqcup X=D$ with

$$
\begin{aligned}
D x & =\sqcup\{f x \mid f \in X\} \\
& =\left\{\begin{array}{cl}
z & \text { if } f x=z \\
\top & \text { otherwise }
\end{array} \quad(f \in X)\right.
\end{aligned}
$$

:-))

For every edge $k=($, , lab,_), construct an effect function
$\llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ which simulates the concrete computation.
Obviously, $\quad \llbracket l a b \rrbracket^{\sharp} \perp=\perp$ for all lab :-)
Now let $\perp \neq D \in \operatorname{Vars} \rightarrow \mathbb{Z}^{\top}$.

Idea:

- We use D to determine the values of expressions.

Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain T :-)

Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain T :-)
\qquad
We must replace the concrete operators $\quad \square$ by abstract operators $\quad \square \sharp$ which can handle T :

$$
a \square^{\sharp} b= \begin{cases}\top & \text { if } a=\top \text { or } b=\top \\ a \square b & \text { otherwise }\end{cases}
$$

Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain T :-)
\qquad
We must replace the concrete operators $\quad \square$ by abstract operators $\quad \square \sharp$ which can handle T :

$$
a \square^{\sharp} b= \begin{cases}\top & \text { if } a=\top \text { or } b=\top \\ a \square b & \text { otherwise }\end{cases}
$$

- The abstract operators allow to define an abstract evaluation of expressions:

$$
\llbracket e \rrbracket^{\sharp}:\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right) \rightarrow \mathbb{Z}^{\top}
$$

Abstract evaluation of expressions is like the concrete evaluation - but with abstract values and operators. Here:

$$
\begin{array}{ll}
\llbracket c \rrbracket^{\sharp} D & =c \\
\llbracket e_{1} \square e_{2} \rrbracket^{\sharp} D & =\llbracket e_{1} \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_{2} \rrbracket^{\sharp} D
\end{array}
$$

... analogously for unary operators :-)

Abstract evaluation of expressions is like the concrete evaluation - but with abstract values and operators. Here:

$$
\begin{array}{ll}
\llbracket c \rrbracket^{\sharp} D & =c \\
\llbracket e_{1} \square e_{2} \rrbracket^{\sharp} D & =\llbracket e_{1} \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_{2} \rrbracket^{\sharp} D
\end{array}
$$

... analogously for unary operators :-)
Example:

$$
D=\{x \mapsto 2, y \mapsto \top\}
$$

$$
\begin{aligned}
\llbracket x+7 \rrbracket^{\sharp} D & =\llbracket x \rrbracket^{\sharp} D+\sharp \llbracket 7 \rrbracket^{\sharp} D \\
& =2+\sharp 7 \\
& =9 \\
\llbracket x-y \rrbracket^{\sharp} D & =2-\sharp \top \\
& =\top
\end{aligned}
$$

Thus, we obtain the following effects of edges $\llbracket l a b \rrbracket^{\sharp}$:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} D & =D \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} D & = \begin{cases}\perp & \text { if } \\
D & 0=\llbracket e \rrbracket^{\sharp} D\end{cases} \\
\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} D & = \begin{cases}D & \text { if } 0 \sqsubseteq \llbracket e \rrbracket^{\sharp} D \\
\perp & \text { otherwise }\end{cases} \\
\llbracket x=e ; \rrbracket^{\sharp} D & =D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\} \\
\llbracket x=M[e] ; \rrbracket^{\sharp} D & =D \oplus\{x \mapsto T\} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} D & =D
\end{array}
$$

$$
\text { ... whenever } \quad D \neq \perp:-)
$$

At start, we have $D_{\top}=\{x \mapsto \top \mid x \in$ Vars $\}$.

Example:

At start, we have $D_{\top}=\{x \mapsto \top \mid x \in \operatorname{Vars}\}$.

Example:

1	$\{x \mapsto \top\}$
2	$\{x \mapsto 7\}$
3	$\{x \mapsto 7\}$
4	$\{x \mapsto 7\}$
5	$\perp \sqcup\{x \mapsto 7\}=\{x \mapsto 7\}$

The abstract effects of edges $\llbracket k \rrbracket^{\sharp}$ are again composed to the effects of paths $\pi=k_{1} \ldots k_{r}$ by:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp} \quad: \mathbb{D} \rightarrow \mathbb{D}
$$

Idea for Correctness:

Abstract Interpretation
Cousot, Cousot 1977

Patrick Cousot, ENS, Paris

The abstract effects of edges $\llbracket k \rrbracket^{\sharp}$ are again composed to the effects of paths $\pi=k_{1} \ldots k_{r}$ by:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp} \quad: \mathbb{D} \rightarrow \mathbb{D}, 0 .}
$$

Idea for Correctness:

Abstract Interpretation

Cousot, Cousot 1977

Establish a description relation Δ between theconcrete values and their descriptions with:

$$
x \Delta a_{1} \wedge a_{1} \sqsubseteq a_{2} \Longrightarrow x \Delta a_{2}
$$

Concretization: $\quad \gamma a=\{x \mid x \Delta a\}$
// returns the set of described values :-)
(1) Values:

$$
\begin{aligned}
& \Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top} \\
& \quad z \Delta a \quad \text { iff } \quad z=a \vee a=\top
\end{aligned}
$$

Concretization:

$$
\gamma a=\left\{\begin{array}{lll}
\{a\} & \text { if } & a \sqsubset \top \\
\mathbb{Z} & \text { if } & a=\top
\end{array}\right.
$$

(1) Values:

$$
\begin{aligned}
& \Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top} \\
& z \Delta a \quad \text { iff } \quad z=a \vee a=\top
\end{aligned}
$$

Concretization:

$$
\gamma a=\left\{\begin{array}{lll}
\{a\} & \text { if } & a \sqsubset \top \\
\mathbb{Z} & \text { if } & a=\top
\end{array}\right.
$$

(2) Variable Assignments: $\Delta \subseteq(\operatorname{Vars} \rightarrow \mathbb{Z}) \times\left(\operatorname{Vars} \rightarrow \mathbb{Z}^{\top}\right)_{\perp}$

$$
\rho \Delta D \quad \text { iff } \quad D \neq \perp \wedge \rho x \sqsubseteq D x \quad(x \in \text { Vars })
$$

Concretization:

$$
\gamma D= \begin{cases}\emptyset & \text { if } D=\perp \\ \{\rho \mid \forall x:(\rho x) \Delta(D x)\} & \text { otherwise }\end{cases}
$$

Example: $\quad\{x \mapsto 1, y \mapsto-7\} \Delta\{x \mapsto \top, y \mapsto-7\}$
(3) States:

$$
\begin{gathered}
\Delta \subseteq((\text { Vars } \rightarrow \mathbb{Z}) \times(\mathbb{N} \rightarrow \mathbb{Z})) \times\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right) \perp \\
(\rho, \mu) \Delta D \quad \text { gdw. } \quad \rho \Delta D
\end{gathered}
$$

Concretization:

$$
\gamma D= \begin{cases}\emptyset & \text { if } D=\perp \\ \{(\rho, \mu) \mid \forall x:(\rho x) \Delta(D x)\} & \text { otherwise }\end{cases}
$$

We show:
(*) If $s \Delta D$ and $\llbracket \pi \rrbracket s$ is defined, then:

$$
(\llbracket \pi \rrbracket s) \Delta\left(\llbracket \pi \rrbracket^{\sharp} D\right)
$$

The abstract semantics simulates the die concrete semantics
:-)
In particular:

$$
\llbracket \pi \rrbracket s \in \gamma\left(\llbracket \pi \rrbracket^{\sharp} D\right)
$$

The abstract semantics simulates the die concrete semantics
:-)
In particular:

$$
\llbracket \pi \rrbracket s \in \gamma\left(\llbracket \pi \rrbracket^{\sharp} D\right)
$$

In practice, this means, e.g., that $D x=-7$ implies:

$$
\begin{aligned}
\rho^{\prime} x & =-7 \text { for all } \rho^{\prime} \in \gamma D \\
\Longrightarrow \rho_{1} x & =-7 \text { for }\left(\rho_{1,-}\right)=\llbracket \pi \rrbracket S
\end{aligned}
$$

To prove $(*)$, we show for every edge k :

Then $(*)$ follows by induction :-)

To prove $(* *)$, we show for every expression e :
$(* * *)(\llbracket \complement \rrbracket \rho) \Delta(\llbracket \ell \rrbracket \rrbracket$) whenever $\rho \Delta D$

To prove $(* *)$, we show for every expression e :
$(* * *)(\llbracket \complement \rrbracket \rho) \Delta(\llbracket \llbracket \rrbracket \rrbracket D) \quad$ whenever $\rho \Delta D$

To prove $(* * *)$, we show for every operator \square :

$$
(x \square y) \Delta\left(x^{\sharp} \square^{\sharp} y^{\sharp}\right) \quad \text { whenever } \quad x \Delta x^{\sharp} \wedge y \Delta y^{\sharp}
$$

To prove $(* *)$, we show for every expression e :
$(* * *)(\llbracket \complement \rrbracket \rho) \Delta(\llbracket \llbracket \rrbracket \rrbracket D) \quad$ whenever $\rho \Delta D$

To prove $(* * *)$, we show for every operator \square :

$$
(x \square y) \Delta\left(x^{\sharp} \square^{\sharp} y^{\sharp}\right) \quad \text { whenever } \quad x \Delta x^{\sharp} \wedge y \Delta y^{\sharp}
$$

This precisely was how we have defined the operators $\quad \square^{\sharp}$:-)

Now, $(* *)$ is proved by case distinction on the edge labels lab.
Let $s=(\rho, \mu) \Delta D$. In particular, $\perp \neq D: \operatorname{Vars} \rightarrow \mathbb{Z}^{\top}$

Case $x=e_{i}$:

$$
\begin{array}{ll}
\rho_{1} & =\rho \oplus\{x \mapsto \llbracket e \rrbracket \rho\} \quad \mu_{1}=\mu \\
D_{1} & =D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\} \\
& \left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{array}
$$

Case $x=M[e] ;$;

$$
\begin{array}{ll}
\rho_{1} & =\rho \oplus\left\{x \mapsto \mu\left(\llbracket e \rrbracket^{\sharp} \rho\right)\right\} \\
D_{1} & =D \oplus\{x \mapsto \top\} \\
& \left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{array}
$$

Case $M\left[e_{1}\right]=e_{2 ;}$:

$$
\begin{aligned}
& \rho_{1}=\rho \quad \mu_{1}=\mu \oplus\left\{\llbracket e_{1} \rrbracket^{\sharp} \rho \mapsto \llbracket e_{2} \rrbracket^{\sharp} \rho\right\} \\
& D_{1}= \\
& \Longrightarrow \\
& \Longrightarrow \quad\left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{aligned}
$$

Case $\quad \operatorname{Neg}(e): \quad\left(\rho_{1}, \mu_{1}\right)=s \quad$ where:

$$
\begin{aligned}
0 & =\llbracket e \rrbracket \rho \\
& \Delta \llbracket e \rrbracket^{\sharp} D \\
\Longrightarrow & \vdots \llbracket e \rrbracket^{\sharp} D \\
\Longrightarrow & \perp D_{1}=D \\
\Longrightarrow & \left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{aligned}
$$

Case $\operatorname{Pos}(e): \quad\left(\rho_{1}, \mu_{1}\right)=s \quad$ where:

$$
\begin{array}{lll}
0 & \neq & \llbracket e \rrbracket \rho \\
& \Delta & \llbracket e \rrbracket^{\sharp} D \\
& 0 \quad & \neq \llbracket e \rrbracket^{\sharp} D \\
\Longrightarrow & \perp & \neq D_{1}=D \\
\Longrightarrow & \left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{array}
$$

We conclude: The assertion (*) is true :-))

The MOP-Solution:

$$
\begin{aligned}
& \qquad \mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi: \text { start } \rightarrow{ }^{*} v\right\} \\
& \text { where } \quad D_{\top} x=\top \quad(x \in \text { Vars }) .
\end{aligned}
$$

We conclude: The assertion (*) is true :-))

The MOP-Solution:
$\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi:\right.$ start $\left.\rightarrow^{*} v\right\}$
where $\quad D_{\top} x=\top \quad(x \in$ Vars $)$.

By (*), we have for all initial states s and all program executions π which reach v :

$$
(\llbracket \pi \rrbracket s) \Delta\left(\mathcal{D}^{*}[v]\right)
$$

We conclude: The assertion (*) is true :-))

The MOP-Solution
$\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{T} \mid \pi:\right.$ start $\left.\rightarrow^{*} v\right\}$
where $\quad D_{\top} x=\top \quad(x \in$ Vars $)$.

By (*), we have for all initial states s and all program executions π which reach v :

$$
(\llbracket \pi \rrbracket s) \Delta\left(\mathcal{D}^{*}[v]\right)
$$

In order to approximate the MOP, we use our constraint system :-))

Example:

Example:

Example:

Example:

	1		2		3	
	x	y	x	y	x	y
0	\top	\top	\top	\top		
1	10	\top	10	\top		
2	10	1	\top	\top		
3	10	1	\top	\top		
4	10	10	\top	\top	dito	
5	9	10	\top	\top		
6		\perp	\top	\top		
7		\perp	\top	\top		

Conclusion:

Although we compute with concrete values, we fail to compute everything :-(

The fixpoint iteration, at least, is guaranteed to terminate:
For n program points and m variables, we maximally need: $n \cdot(m+1)$ rounds :-)

Warning:

The effects of edge are not distributive !!!

Counter Example: $\quad f=\llbracket x=x+y ; \rrbracket^{\sharp}$

$$
\begin{aligned}
\text { Let } \begin{aligned}
D_{1} & =\{x \mapsto 2, y \mapsto 3\} \\
D_{2} & =\{x \mapsto 3, y \mapsto 2\} \\
\text { Dann } f D_{1} \sqcup f D_{2} & =\{x \mapsto 5, y \mapsto 3\} \sqcup\{x \mapsto 5, y \mapsto 2\} \\
& =\{x \mapsto 5, y \mapsto \top\} \\
& \neq\{x \mapsto \top, y \mapsto \top\} \\
& =f\{x \mapsto \top, y \mapsto \top\} \\
& =f\left(D_{1} \sqcup D_{2}\right)
\end{aligned}, l
\end{aligned}
$$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$
\mathcal{D}^{*}[v] \sqsubseteq \mathcal{D}[v]
$$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$
\mathcal{D}^{*}[v] \sqsubseteq \mathcal{D}[v]
$$

As an upper approximation, $\mathcal{D}[v]$ nonetheless describes the result of every program execution π which reaches v :

$$
(\llbracket \pi \rrbracket(\rho, \mu)) \Delta(\mathcal{D}[v])
$$

whenever $\llbracket \pi \rrbracket(\rho, \mu)$ is defined ;-))

Transformation 4:

Removal of Dead Code

$\llbracket l a b \rrbracket^{\sharp}(\mathcal{D}[u])=\perp$

Transformation 4 (cont.): Removal of Dead Code

Transformation 4 (cont.):

Simplified Expressions

