Extensions:

- Instead of complete right-hand sides, also subexpressions could be simplified:

$$
x+(3 * y) \quad \xlongequal{\{x \mapsto T, y \mapsto 5\}} x+15
$$

... and further simplifications be applied, e.g.:

$$
\begin{aligned}
x * 0 & \Longrightarrow 0 \\
x * 1 & \Longrightarrow x \\
x+0 & \Longrightarrow x \\
x-0 & \Longrightarrow x
\end{aligned}
$$

- So far, the information of conditions has not yet be optimally exploited:

$$
\begin{aligned}
& \text { if }(x==7) \\
& y=x+3 ;
\end{aligned}
$$

Even if the value of x before the if statement is unknown, we at least know that $\quad x$ definitely has the value 7 whenever the then-part is entered :-)

Therefore, we can define:

$$
\llbracket \operatorname{Pos}(x==e) \rrbracket^{\sharp} D= \begin{cases}D & \text { if } \llbracket x==e \rrbracket^{\sharp} D=1 \\ \perp & \text { if } \llbracket x==e \rrbracket^{\sharp} D=0 \\ D_{1} & \text { otherwise }\end{cases}
$$

where

$$
D_{1}=D \oplus\left\{x \mapsto\left(D x \sqcap \llbracket e \rrbracket^{\sharp} D\right)\right\}
$$

The effect of an edge labeled $\operatorname{Neg}(x \neq e)$ is analogous :-)

Our Example:

The effect of an edge labeled $\operatorname{Neg}(x \neq e)$ is analogous :-)

Our Example:

The effect of an edge labeled $\operatorname{Neg}(x \neq e)$ is analogous :-)

Our Example:

1.5 Interval Analysis

Observation:

- Programmers often use global constants for switching debugging code on/off.
\qquad
Constant propagation is useful :-)
- In general, precise values of variables will be unknown perhaps, however, a tight interval !!!

Example:

$$
\begin{aligned}
& \text { for }(i=0 ; i<42 ; i++) \\
& \qquad \begin{array}{c}
\text { if }(0 \leq i \wedge i<42)\{ \\
A_{1}=A+i \\
M\left[A_{1}\right]=i \\
\}
\end{array} \\
& \text { // A start address of an array } \\
& \text { // if the array-bound check }
\end{aligned}
$$

Obviously, the inner check is superfluous :-)

Idea 1 :

Determine for every variable x an (as tight as possible :-) interval of possible values:

$$
\mathbb{I}=\{[l, u] \mid l \in \mathbb{Z} \cup\{-\infty\}, u \in \mathbb{Z} \cup\{+\infty\}, l \leq u\}
$$

Partial Ordering:

$$
\left[l_{1}, u_{1}\right] \sqsubseteq\left[l_{2}, u_{2}\right] \quad \text { iff } \quad l_{2} \leq l_{1} \wedge u_{1} \leq u_{2}
$$

Thus:

$$
\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right]=\left[l_{1} \sqcap l_{2}, u_{1} \sqcup u_{2}\right]
$$

Thus:

$$
\begin{aligned}
& {\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right]=\quad\left[l_{1} \sqcap l_{2}, u_{1} \sqcup u_{2}\right]} \\
& {\left[l_{1}, u_{1}\right] \sqcap\left[l_{2}, u_{2}\right]=}
\end{aligned} \quad\left[l_{1} \sqcup l_{2}, u_{1} \sqcap u_{2}\right] \quad \text { whenever }\left(l_{1} \sqcup l_{2}\right) \leq\left(u_{1} \sqcap u_{2}\right)
$$

Warning:
$\rightarrow \quad \mathbb{I}$ is not a complete lattice :-)
$\rightarrow \quad \mathbb{I}$ has infinite ascending chains, e.g.,

$$
[0,0] \sqsubset[0,1] \sqsubset[-1,1] \sqsubset[-1,2] \sqsubset \ldots
$$

Warning:
$\rightarrow \quad \mathbb{I}$ is not a complete lattice :-)
$\rightarrow \quad \mathbb{I}$ has infinite ascending chains, e.g.,

$$
[0,0] \sqsubset[0,1] \sqsubset[-1,1] \sqsubset[-1,2] \sqsubset \ldots
$$

Description Relation:

$$
z \Delta[l, u] \quad \text { iff } \quad l \leq z \leq u
$$

Concretization:

$$
\gamma[l, u]=\{z \in \mathbb{Z} \mid l \leq z \leq u\}
$$

Example:

$$
\begin{aligned}
\gamma[0,7] & =\{0, \ldots, 7\} \\
\gamma[0, \infty] & =\{0,1,2, \ldots,\}
\end{aligned}
$$

Computing with intervals:

Interval Arithmetic :-)

Addition:

$$
\begin{aligned}
{\left[l_{1}, u_{1}\right]+^{\sharp}\left[l_{2}, u_{2}\right] } & =\left[l_{1}+l_{2}, u_{1}+u_{2}\right] \quad \text { where } \\
-\infty+_{-} & =-\infty \\
+\infty+_{-} & =+\infty \\
& / /-\infty+\infty \text { cannot occur :-) }
\end{aligned}
$$

Negation:

$$
-^{\sharp}[l, u]=[-u,-l]
$$

Multiplication:

$$
\begin{aligned}
{\left[l_{1}, u_{1}\right] *^{\sharp}\left[l_{2}, u_{2}\right] } & =[a, b] \quad \text { where } \\
a & =l_{1} l_{2} \sqcap l_{1} u_{2} \sqcap u_{1} l_{2} \sqcap u_{1} u_{2} \\
b & =l_{1} l_{2} \sqcup l_{1} u_{2} \sqcup u_{1} l_{2} \sqcup u_{1} u_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
{[0,2] *^{\sharp}[3,4] } & =[0,8] \\
{[-1,2] *^{\sharp}[3,4] } & =[-4,8] \\
{[-1,2] *^{\#}[-3,4] } & =[-6,8] \\
{[-1,2] *^{\sharp}[-4,-3] } & =[-8,4]
\end{aligned}
$$

Division:

$$
\left[l_{1}, u_{1}\right] / \sharp\left[l_{2}, u_{2}\right]=[a, b]
$$

- If 0 is not contained in the interval of the denominator, then:

$$
\begin{aligned}
a & =l_{1} / l_{2} \sqcap l_{1} / u_{2} \sqcap u_{1} / l_{2} \sqcap u_{1} / u_{2} \\
b & =l_{1} / l_{2} \sqcup l_{1} / u_{2} \sqcup u_{1} / l_{2} \sqcup u_{1} / u_{2}
\end{aligned}
$$

- If: $\quad l_{2} \leq 0 \leq u_{2}$, we define:

$$
[a, b]=[-\infty,+\infty]
$$

Equality:

$$
\left[l_{1}, u_{1}\right]==^{\sharp}\left[l_{2}, u_{2}\right]= \begin{cases}{[1,1]} & \text { if } l_{1}=u_{1}=l_{2}=u_{2} \\ {[0,0]} & \text { if } u_{1}<l_{2} \vee u_{2}<l_{1} \\ {[0,1]} & \text { otherwise }\end{cases}
$$

Equality:

$$
\left[l_{1}, u_{1}\right]==^{\sharp}\left[l_{2}, u_{2}\right]= \begin{cases}{[1,1]} & \text { if } l_{1}=u_{1}=l_{2}=u_{2} \\ {[0,0]} & \text { if } u_{1}<l_{2} \vee u_{2}<l_{1} \\ {[0,1]} & \text { otherwise }\end{cases}
$$

Example:

$$
\begin{aligned}
& {[42,42]==^{\sharp}[42,42]=[1,1]} \\
& {[0,7]=={ }^{\sharp}[0,7]=[0,1]} \\
& {[1,2]==^{\sharp}[3,4]=[0,0]}
\end{aligned}
$$

Less:

$$
\left[l_{1}, u_{1}\right]<^{\sharp}\left[l_{2}, u_{2}\right]=\left\{\begin{array}{lll}
{[1,1]} & \text { if } & u_{1}<l_{2} \\
{[0,0]} & \text { if } & u_{2} \leq l_{1} \\
{[0,1]} & \text { otherwise }
\end{array}\right.
$$

Less:

$$
\left[l_{1}, u_{1}\right]<^{\sharp}\left[l_{2}, u_{2}\right]= \begin{cases}{[1,1]} & \text { if } u_{1}<l_{2} \\ {[0,0]} & \text { if } u_{2} \leq l_{1} \\ {[0,1]} & \text { otherwise }\end{cases}
$$

Example:

$$
\begin{aligned}
{[1,2]<^{\sharp}[9,42] } & =[1,1] \\
{[0,7]<^{\sharp}[0,7] } & =[0,1] \\
{[3,4]<^{\sharp}[1,2] } & =[0,0]
\end{aligned}
$$

By means of \mathbb{I} we construct the complete lattice:

$$
\mathbb{D}_{\mathbb{I}}=(\text { Vars } \rightarrow \mathbb{I})_{\perp}
$$

Description Relation:

$$
\rho \Delta D \quad \text { iff } \quad D \neq \perp \quad \wedge \quad \forall x \in \operatorname{Vars}:(\rho x) \Delta(D x)
$$

The abstract evaluation of expressions is defined analogously to constant propagation. We have:

$$
(\llbracket e \rrbracket \rho) \Delta\left(\llbracket e \rrbracket^{\sharp} D\right) \quad \text { whenever } \quad \rho \Delta D
$$

The Effects of Edges:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} D & =D \\
\llbracket x=e ; \rrbracket^{\sharp} D & = \\
\llbracket x=M[e] ; \rrbracket^{\sharp} D= & D \oplus\{x \mapsto \top\} \\
\left.\llbracket x=\llbracket \rrbracket^{\sharp} D\right\} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} D= & D \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} D= & \begin{cases}\perp & \text { if } \quad[0,0]=\llbracket e \rrbracket^{\sharp} D \\
D & \text { otherwise }\end{cases} \\
\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} D= & \begin{cases}D & \text { if } \quad[0,0] \sqsubseteq \llbracket e \rrbracket^{\sharp} D \\
\perp & \text { otherwise }\end{cases} \\
& \ldots \text { given that } \quad D \neq \perp \quad:-)
\end{array}
$$

Better Exploitation of Conditions:

$$
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} D= \begin{cases}\perp & \text { if } \quad[0,0]=\llbracket e \rrbracket^{\sharp} D \\ D_{1} & \text { otherwise }\end{cases}
$$

where :

$$
D_{1} \quad= \begin{cases}D \oplus\left\{x \mapsto(D x) \sqcap\left(\llbracket e_{1} \rrbracket^{\sharp} D\right)\right\} & \text { if } e \equiv x==e_{1} \\ D \oplus\{x \mapsto(D x) \sqcap[-\infty, u]\} & \text { if } e \equiv x \leq e_{1}, \llbracket e_{1} \rrbracket^{\sharp} D=[, u] \\ D \oplus\{x \mapsto(D x) \sqcap[l, \infty]\} & \text { if } e \equiv x \geq e_{1}, \llbracket e_{1} \rrbracket^{\sharp} D=[l,]\end{cases}
$$

Better Exploitation of Conditions (cont.):

$$
\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} D= \begin{cases}\perp & \text { if } \quad[0,0] \nsubseteq \llbracket \llbracket \rrbracket^{\sharp} D \\ D_{1} & \text { otherwise }\end{cases}
$$

where :

$$
D_{1}= \begin{cases}D \oplus\left\{x \mapsto(D x) \sqcap\left(\llbracket e_{1} \rrbracket^{\sharp} D\right)\right\} & \text { if } e \equiv x \neq e_{1} \\ D \oplus\{x \mapsto(D x) \sqcap[-\infty, u]\} & \text { if } e \equiv x>e_{1}, \llbracket e_{1} \rrbracket^{\sharp} D=\left[_, u\right] \\ D \oplus\{x \mapsto(D x) \sqcap[l, \infty]\} & \text { if } e \equiv x<e_{1}, \llbracket e_{1} \rrbracket^{\sharp} D=[l,-]\end{cases}
$$

Example:

	i	
	l	u
0	$-\infty$	$+\infty$
1	0	42
2	0	41
3	0	41
4	0	41
5	0	41
6	1	42
7	\perp	
8	42	42

Problem:

$\rightarrow \quad$ The solution can be computed with RR-iteration after about 42 rounds
$\rightarrow \quad$ On some programs, iteration may never terminate

Idea 1: Widening

- Accelerate the iteration - at the prize of imprecision :-)
- Allow only a bounded number of modifications of values !!!
... in the Example:
- dis-allow updates of interval bounds in \mathbb{Z}...
$\Longrightarrow \quad$ a maximal chain:

$$
[3,17] \sqsubset[3,+\infty] \sqsubset[-\infty,+\infty]
$$

Formalization of the Approach:

Let $\quad x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n$
denote a system of constraints over \mathbb{D} where the f_{i} are not necessarily monotonic.
Nonetheless, an accumulating iteration can be defined. Consider the system of equations:

$$
\begin{equation*}
x_{i}=x_{i} \sqcup f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

We obviously have:
(a) $\quad \underline{x}$ is a solution of (1) iff \underline{x} is a solution of (2).
(b) The function $G: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ with $G\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right), \quad y_{i}=x_{i} \sqcup f_{i}\left(x_{1}, \ldots, x_{n}\right)$ is increasing, i.e., $\underline{x} \sqsubseteq G \underline{x}$ for all $\underline{x} \in \mathbb{D}^{n}$.
(c) The sequence $G^{k} \perp, k \geq 0$, is an ascending chain:

$$
\perp \sqsubseteq G \perp \sqsubseteq \ldots \sqsubseteq G^{k} \perp \sqsubseteq \ldots
$$

(d) If $G^{k} \perp=G^{k+1} \perp=\underline{y}$, then \underline{y} is a solution of (1).
(e) If \mathbb{D} has infinite strictly ascending chains, then (d) is not yet sufficient ...
but: we could consider the modified system of equations:

$$
\begin{equation*}
x_{i}=x_{i} \sqcup f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

for a binary operation widening:

$$
\sqcup: \mathbb{D}^{2} \rightarrow \mathbb{D} \quad \text { with } \quad v_{1} \sqcup v_{2} \sqsubseteq v_{1} \sqcup v_{2}
$$

(RR)-iteration for (3) still will compute a solution of (1) :-)
... for Interval Analysis:

- The complete lattice is: $\quad \mathbb{D}_{\mathbb{I}}=(\text { Vars } \rightarrow \mathbb{I})_{\perp}$
- the widening $\quad \forall$ is defined by:

$$
\begin{aligned}
& \perp \sqcup D=D \sqcup \perp=D \text { and for } \quad D_{1} \neq \perp \neq D_{2}: \\
&\left(D_{1} \sqcup D_{2}\right) x=\left(D_{1} x\right) \sqcup\left(D_{2} x\right) \quad \text { where } \\
& {\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right] }=[l, u] \\
& \text { with } \\
& l= \begin{cases}l_{1} & \text { if } l_{1} \leq l_{2} \\
-\infty & \text { otherwise }\end{cases} \\
& u= \begin{cases}u_{1} & \text { if } u_{1} \geq u_{2} \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

$\Longrightarrow \quad \sqcup \quad$ is not commutative !!!

Example:

$$
\begin{aligned}
{[0,2] \sqcup[1,2] } & =[0,2] \\
{[1,2] \sqcup[0,2] } & =[-\infty, 2] \\
{[1,5] \sqcup[3,7] } & =[1,+\infty]
\end{aligned}
$$

$\rightarrow \quad$ Widening returns larger values more quickly.
$\rightarrow \quad$ It should be constructed in such a way that termination of iteration is guaranteed :-)
$\rightarrow \quad$ For interval analysis, widening bounds the number of iterations by:

$$
\text { \#points • (1 + } 2 \cdot \# \text { Vars })
$$

Conclusion:

- In order to determine a solution of (1) over a complete lattice with infinite ascending chains, we define a suitable widening and then solve (3) :-)
- Warning: The construction of suitable widenings is a dark art !!!
Often $\quad \sqcup \quad$ is chosen dynamically during iteration such that
\rightarrow the abstract values do not get too complicated;
\rightarrow the number of updates remains bounded ...

Our Example:

Our Example:

... obviously, the result is disappointing :-(

Idea 2:

In fact, acceleration with $\quad \sqcup \quad$ need only be applied at sufficiently many places!

A set I is a loop separator, if every loop contains at least one point from I :-)

If we apply widening only at program points from such a set I, then RR-iteration still terminates !!!

In our Example:

The Analysis with $I=\{1\}$:

The Analysis with $I=\{2\}$:

	1		2		3	
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	42		
2	0	0	0	$+\infty$		
3	0	0	0	41		
4	0	0	0	41	dito	
5	0	0	0	41		
6	1	1	1	42		
7			42	$+\infty$		
8		\perp	42	42		

Discussion:

- Both runs of the analysis determine interesting information :-)
- The run with $I=\{2\}$ proves that always $i=42$ after leaving the loop.
- Only the run with $I=\{1\}$ finds, however, that the outer check makes the inner check superfluous

How can we find a suitable loop separator I ???

Idea 3: Narrowing
Let \underline{x} denote any solution of (1), i.e.,

$$
x_{i} \sqsupseteq f_{i} \underline{x}, \quad i=1, \ldots, n
$$

Then for monotonic f_{i},

$$
\underline{x} \sqsupseteq F \underline{x} \sqsupseteq F^{2} \underline{x} \sqsupseteq \ldots \sqsupseteq F^{k} \underline{x} \sqsupseteq \ldots
$$

// Narrowing Iteration

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$
x_{i} \sqsupseteq f_{i} \underline{x}, \quad i=1, \ldots, n
$$

Then for monotonic f_{i},

$$
\underline{x} \sqsupseteq F \underline{x} \sqsupseteq F^{2} \underline{x} \sqsupseteq \ldots \sqsupseteq F^{k} \underline{x} \sqsupseteq \ldots
$$

// Narrowing Iteration

Every tuple $F^{k} \underline{x}$ is a solution of (1) :-)
\square
Termination is no problem anymore: we stop whenever we want :-))
// The same also holds for RR-iteration.

Narrowing Iteration in the Example:

