Narrowing Iteration in the Example:

Narrowing Iteration in the Example:

	0		1		2	
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$
1	0	$+\infty$	0	$+\infty$	0	42
2	0	$+\infty$	0	41	0	41
3	0	$+\infty$	0	41	0	41
4	0	$+\infty$	0	41	0	41
5	0	$+\infty$	0	41	0	41
6	1	$+\infty$	1	42	1	42
7	42	$+\infty$		\perp		\perp
8	42	$+\infty$	42	$+\infty$	42	42

Discussion:

$\rightarrow \quad$ We start with a safe approximation.
\rightarrow We find that the inner check is redundant :-)
$\rightarrow \quad$ We find that at exit from the loop, always $i=42 \quad:-))$
$\rightarrow \quad$ It was not necessary to construct an optimal loop separator :-)))

Last Question:

Do we have to accept that narrowing may not terminate ???

4. Idea: Accelerated Narrowing

Assume that we have a solution $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ of the system of constraints:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

Then consider the system of equations:

$$
\begin{equation*}
x_{i}=x_{i} \sqcap f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{4}
\end{equation*}
$$

Obviously, we have for monotonic $\left.f_{i}: \quad H^{k} \underline{x}=F^{k} \underline{x} \quad:-\right)$ where $H\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right), y_{i}=x_{i} \sqcap f_{i}\left(x_{1}, \ldots, x_{n}\right)$.

In (4), we replace \sqcap durch by the novel operator $\quad \sqcap$ where:

$$
a_{1} \sqcap a_{2} \sqsubseteq a_{1} \sqcap a_{2} \sqsubseteq a_{1}
$$

... for Interval Analysis:
We preserve finite interval bounds :-)

Therefore, $\quad \perp \sqcap D=D \sqcap \perp=\perp$ and for $\quad D_{1} \neq \perp \neq D_{2}$:

$$
\begin{aligned}
&\left(D_{1} \sqcap D_{2}\right) x=\left(D_{1} x\right) \sqcap\left(D_{2} x\right) \quad \text { where } \\
& {\left[l_{1}, u_{1}\right] \sqcap\left[l_{2}, u_{2}\right] }=[l, u] \quad \text { mit } \\
& l=\left\{\begin{array}{lll}
l_{2} & \text { if } l_{1}=-\infty \\
l_{1} & \text { otherwise }
\end{array}\right. \\
& u=\left\{\begin{array}{lll}
u_{2} & \text { if } & u_{1}=\infty \\
u_{1} & \text { otherwise }
\end{array}\right. \\
& \Longrightarrow \sqcap \quad \text { is not commutative !!! }
\end{aligned}
$$

Accelerated Narrowing in the Example:

	0		1		2	
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$
1	0	$+\infty$	0	$+\infty$	0	42
2	0	$+\infty$	0	41	0	41
3	0	$+\infty$	0	41	0	41
4	0	$+\infty$	0	41	0	41
5	0	$+\infty$	0	41	0	41
6	1	$+\infty$	1	42	1	42
7	42	$+\infty$		\perp		\perp
8	42	$+\infty$	42	$+\infty$	42	42

Discussion:

\rightarrow Warning: Widening also returns for non-monotonic f_{i} a solution. Narrowing is only applicable to monotonic f_{i} !!
$\rightarrow \quad$ In the example, accelerated narrowing already returns the optimal result :-)
$\rightarrow \quad$ If the operator $\quad \sqcap \quad$ only allows for finitely many improvements of values, we may execute narrowing until stabilization.
$\rightarrow \quad$ In case of interval analysis these are at most:

$$
\text { \#points } \cdot(1+2 \cdot \# \text { Vars })
$$

1.6 Pointer Analysis

Questions:

$\rightarrow \quad$ Are two addresses possibly equal?
$\rightarrow \quad$ Are two addresses definitively equal?

1.6 Pointer Analysis

Questions:

$\rightarrow \quad$ Are two addresses possibly equal?
May Alias
$\rightarrow \quad$ Are two addresses definitively equal?
Must Alias
\Longrightarrow Alias Analysis

The analyses so far without alias information:
(1) Available Expressions:

- Extend the set Expr of expressions by occurring loads $M[e]$.
- Extend the Effects of Edges:

$$
\begin{array}{ll}
\llbracket x=e ; \rrbracket^{\sharp} A & =(A \cup\{e\}) \backslash \text { Expr }_{x} \\
\llbracket x=M[e] ; \mathbb{Z}^{\sharp} A & =(A \cup\{e, M[e]\}) \backslash \text { Expr }_{x} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} A & =\left(A \cup\left\{e_{1}, e_{2}\right\}\right) \backslash \text { Loads }^{2}
\end{array}
$$

(2) Values of Variables:

- Extend the set Expr of expressions by occurring loads $M[e]$.
- Extend the Effects of Edges:

$$
\begin{aligned}
& \llbracket x=M[e] ; \mathbb{\sharp}^{\sharp} V e^{\prime}= \begin{cases}\{x\} & \text { if } e^{\prime}=M[e] \\
\emptyset & \text { if } e^{\prime}=e \\
V e^{\prime} \backslash\{x\} & \text { otherwise }\end{cases} \\
& \llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} V e^{\prime}= \begin{cases}\emptyset & \text { if } e^{\prime} \in\left\{e_{1}, e_{2}\right\} \\
V e^{\prime} & \text { otherwise }\end{cases}
\end{aligned}
$$

(3) Constant Propagation:

- Extend the abstract state by an abstract store M
- Execute accesses to known memory locations!

$$
\begin{aligned}
& \llbracket x=M[e] ; \rrbracket^{\sharp}(D, M)= \begin{cases}(D \oplus\{x \mapsto M a\}, M) & \text { if } \\
& \llbracket e \rrbracket^{\sharp} D=a \sqsubset \top \\
(D \oplus\{x \mapsto \top\}, M) & \text { otherwise }\end{cases} \\
& \llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp}(D, M)= \begin{cases}\left(D, M \oplus\left\{a \mapsto \llbracket e_{2} \rrbracket^{\sharp} D\right\}\right) & \text { if } \\
(D, 工) & \llbracket e_{1} \rrbracket^{\sharp} D=a \sqsubset \top \\
\text { 工 } a & =\top \begin{array}{ll}
& \text { otherwise } \quad W
\end{array} \\
(a \in \mathbb{N}) & \end{cases}
\end{aligned}
$$

Problems:

- Addresses are from \mathbb{N} :-(

There are no infinite strictly ascending chains, but ...

- Exact addresses at compile-time are rarely known :-(
- At the same program point, typically different addresses are accessed ...
- Storing at an unknown address destroys all information M :-(
\Longrightarrow constant propagation fails :-(
\Longrightarrow memory accesses/pointers kill precision

Simplification:

- We consider pointers to the beginning of blocks A which allow indexed accesses $A[i]$:-)
- We ignore well-typedness of the blocks.
- New statements:

$$
\begin{array}{lll}
x=\operatorname{new}() ; & / / & \text { allocation of a new block } \\
x=y[e] ; & / / & \text { indexed read access to a block } \\
y\left[e_{1}\right]=e_{2} ; & / / & \text { indexed write access to a block }
\end{array}
$$

- Blocks are possibly infinite :-)
- For simplicity, all pointers point to the beginning of a block.

Simple Example:

$$
\begin{aligned}
& x=\operatorname{new}() ; \\
& y=\operatorname{new}() ; \\
& x[0]=y ; \\
& y[1]=7 ;
\end{aligned}
$$

The Semantics:

x	\square
y	\square

The Semantics:

The Semantics:

The Semantics:

The Semantics:

More Complex Example:

$$
\begin{aligned}
& r=\text { Null; } \\
& \text { while }(t \neq \text { Null })\{ \\
& \quad h=t \\
& \\
& \quad t=t[0] \\
& \\
& \quad h[0]=r \\
& \\
& r=h \\
& \}
\end{aligned}
$$

Concrete Semantics:

A store consists of a finite collection of blocks.
After h new-operations we obtain:

$$
\left.\begin{array}{lll}
\text { Addr }_{h}=\{\operatorname{ref} a \mid 0 \leq a<h\} & / / & \text { addresses } \\
\text { Val }_{h} & =\text { Addr }_{h} \cup \mathbb{Z} & / / \\
\text { values } \\
\text { Store }_{h} & =\left(\text { Addr }_{h} \times \mathbb{N}_{0}\right) \rightarrow \text { Val }_{h} & / / \\
\text { store } \\
\text { State }_{h} & =\left(\text { Vars }_{\text {Val }}^{h}\right)
\end{array}\right) \times \text { Store }_{h} \quad 1 / \text { states }
$$

For simplicity, we set: $\quad 0=$ Null

Let $(\rho, \mu) \in$ State $_{h}$. Then we obtain for the new edges:

$$
\begin{aligned}
\llbracket x=\operatorname{new}() ; \rrbracket(\rho, \mu)= & (\rho \oplus\{x \mapsto \operatorname{ref} h\}, \\
& \mu \oplus\left\{(\operatorname{ref} h, i) \mapsto 0,\left(i \in \mathbb{N}_{0}\right)\right. \\
\llbracket x=y[e] ; \rrbracket(\rho, \mu)= & (\rho \oplus\{x \mapsto \mu(\rho y, \llbracket e \rrbracket \rho)\}, \mu) \\
\llbracket y\left[e_{1}\right]=e_{2} ; \rrbracket(\rho, \mu)= & \left(\rho, \mu \oplus\left\{\left(\rho y, \llbracket e_{1} \rrbracket \rho\right) \mapsto \rho \llbracket e_{2} \rrbracket \rho\right\}\right)
\end{aligned}
$$

Warning:

This semantics is too detailled in that it computes with absolute Addresses. Accordingly, the two programs:

$$
\begin{array}{ll}
x=\operatorname{new}() ; & y=\operatorname{new}() ; \\
y=\operatorname{new}() ; & x=\operatorname{new}() ;
\end{array}
$$

are not considered as equivalent !!?

Possible Solution:

Define equivalence only up to permutation of addresses :-)

Alias Analysis 1. Idea:

- Distinguish finitely many classes of blocks.
- Collect all addresses of a block into one set!
- Use sets of addresses as abstract values!
\Longrightarrow Points-to-Analysis

$$
\begin{aligned}
& \text { Addr } r^{\sharp}=\text { Edges } \\
& V a l^{\sharp}=2^{A d d r^{\sharp}} \\
& \text { Store }{ }^{\sharp}=\text { Addr }^{\sharp} \rightarrow \text { Val }^{\sharp} \\
& \text { State }^{\sharp}=\left(\text { Vars } \rightarrow \text { Val }^{\sharp}\right) \times \text { Store }^{\sharp} \\
& \text { // creation edges } \\
& \text { // complete lattice !!! }
\end{aligned}
$$

... in the Simple Example:

	x	y	$(0,1)$
0	\emptyset	\emptyset	\emptyset
1	$\{(0,1)\}$	\emptyset	\emptyset
2	$\{(0,1)\}$	$\{(1,2)\}$	\emptyset
3	$\{(0,1)\}$	$\{(1,2)\}$	$\{(1,2)\}$
4	$\{(0,1)\}$	$\{(1,2)\}$	$\{(1,2)\}$

