The Effects of Edges:

$$
\begin{aligned}
& \llbracket\left(_, i_{-}\right) \rrbracket^{\sharp}(D, M)=(D, M) \\
& \llbracket\left(_, \operatorname{Pos}(e),\right)^{\sharp}(D, M) \quad=(D, M) \\
& \llbracket\left(_, x=y ;,-\right) \rrbracket^{\sharp}(D, M) \quad=(D \oplus\{x \mapsto D y\}, M) \\
& \llbracket\left(_, x=e_{;},-\right) \rrbracket^{\sharp}(D, M) \quad=(D \oplus\{x \mapsto \emptyset\}, M) \quad, \quad e \notin \text { Vars } \\
& \llbracket(u, x=\operatorname{new}() ; v) \rrbracket^{\sharp}(D, M)=(D \oplus\{x \mapsto\{(u, v)\}\}, M) \\
& \llbracket\left(_, x=y[e] ;,\right) \rrbracket^{\sharp}(D, M)=(D \oplus\{x \mapsto \bigcup\{M(f) \mid f \in D y\}\}, M) \\
& \llbracket\left(_, y\left[e_{1}\right]=x_{;}, \ldots\right) \rrbracket^{\sharp}(D, M) \quad=(D, M \oplus\{f \mapsto(M f \cup D x) \mid f \in D y\})
\end{aligned}
$$

Warning:

- The value Null has been ignored. Dereferencing of Null or negative indices are not detected :-(
- Destructive updates are only possible for variables, not for blocks in storage!
\Longrightarrow no information, if not all block entries are initialized before use
- The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference semantics

In order to prove correctness, we first instrument the concrete semantics with extra information which records where a block has been created.

- We compute possible points-to information.
- From that, we can extract may-alias information.
- The analysis can be rather expensive - without finding very much :-(
- Separate information for each program point can perhaps be abandoned ??

Alias Analysis

2. Idea:

Compute for each variable and address a value which safely approximates the values at every program point simultaneously !
... in the Simple Example:

x	$\{(0,1)\}$
y	$\{(1,2)\}$
$(0,1)$	$\{(1,2)\}$
$(1,2)$	\emptyset

Each edge (u,lab,v) gives rise to constraints:

lab	Constraint
$x=y ;$	$\mathcal{P}[x] \supseteq \mathcal{P}[y]$
$x=\operatorname{new}()$;	$\mathcal{P}[x] \supseteq\{(u, v)\}$
$x=y[e]$;	$\mathcal{P}[x] \supseteq \bigcup\{\mathcal{P}[f] \mid f \in \mathcal{P}[y]\}$
$y\left[e_{1}\right]=x ;$	$\mathcal{P}[f] \supseteq(f \in \mathcal{P}[y]) ? \mathcal{P}[x]: \emptyset$
	for all $f \in A d d r^{\sharp}$

Other edges have no effect :-)

Discussion:

- The resulting constraint system has size $\mathcal{O}(k \cdot n)$ for k abstract addresses and n edges :-(
- The number of necessary iterations is $\mathcal{O}(k) \ldots$
- The computed information is perhaps still too zu precise !!?
- In order to prove correctness of a solution $s^{\sharp} \in$ States $^{\sharp}$ we show:

Alias Analysis
 3. Idea:

Determine one equivalence relation \equiv on variables x and memory accesses $y[]$ with $s_{1} \equiv s_{2}$ whenever s_{1}, s_{2} may contain the same address at some u_{1}, u_{2}
... in the Simple Example:

Discussion:

\rightarrow We compute a single information fo the whole program.
$\rightarrow \quad$ The computation of this information maintains partitions $\left.\pi=\left\{P_{1}, \ldots, P_{m}\right\} \quad:-\right)$
\rightarrow Individual sets $\quad P_{i}$ are identified by means of representatives $p_{i} \in P_{i}$.
\rightarrow The operations on a partition π are:

$$
\begin{array}{ll}
\text { find }(\pi, p) & =p_{i} \quad \text { if } p \in P_{i} \\
& / / \text { returns the representative } \\
\text { union }\left(\pi, p_{i_{1}}, p_{i_{2}}\right) & =\left\{P_{i_{1}} \cup P_{i_{2}}\right\} \cup\left\{P_{j} \mid i_{1} \neq j \neq i_{2}\right\} \\
& / / \quad \text { unions the represented classes }
\end{array}
$$

\rightarrow If $x_{1}, x_{2} \in \operatorname{Vars}$ are equivalent, then also $x_{1}[]$ and x_{2} [] must be equivalent :-)
$\rightarrow \quad$ If $\quad P_{i} \cap \operatorname{Vars} \neq \emptyset$, then we choose $\quad p_{i} \in \operatorname{Vars}$. Then we can apply union recursively:

$$
\begin{aligned}
& \text { union }^{*}\left(\pi, q_{1}, q_{2}\right)=\text { let } p_{i_{1}}
\end{aligned}=\text { find }\left(\pi, q_{1}\right), ~ \begin{aligned}
& p_{i_{2}}=\text { find }\left(\pi, q_{2}\right) \\
& \text { in if } p_{i_{1}}==p_{i_{2}} \text { then } \pi \\
& \text { else let } \pi=\text { union }\left(\pi, p_{i_{1}}, p_{i_{2}}\right) \\
& \text { in } \begin{aligned}
& \text { if } p_{i_{1}}, p_{i_{2}} \in \operatorname{Vars} \text { then } \\
& u_{n i o n}\left(\pi, p_{i_{1}}[], p_{i_{2}}[]\right)
\end{aligned}
\end{aligned}
$$

The analysis iterates over all edges once:

$$
\begin{aligned}
& \pi=\{\{x\},\{x[]\} \mid x \in \operatorname{Vars}\} ; \\
& \text { forall } k=\left(_, \text {lab,_ }\right) \text { do } \pi=\llbracket l a b \rrbracket \rrbracket \pi ;
\end{aligned}
$$

where:

$$
\begin{array}{ll}
\llbracket x=y ; \rrbracket^{\sharp} \pi & =\text { union }^{*}(\pi, x, y) \\
\llbracket x=y[e] ; \rrbracket^{\sharp} \pi & =\text { union }^{*}(\pi, x, y[]) \\
\llbracket y[e]=x ; \rrbracket^{\sharp} \pi & =\text { union }^{*}(\pi, x, y[]) \\
\llbracket l a b \rrbracket^{\sharp} \pi & =\pi \quad \text { otherwise }
\end{array}
$$

... in the Simple Example:

$(0,1)$	$\{\{x\},\{y\},\{x[]\},\{y[]\}\}$
$(1,2)$	$\{\{x\},\{y\},\{x[]\},\{y[]\}\}$
$(2,3)$	$\{\{x\},\{y\},\{x[]\},\{y[]\}\}$
$(3,4)$	$\{\{x\},\{y, x[]\},\{y[]\}\}$

... in the More Complex Example:

Warning:

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

Complexity:

we havve:

$$
\begin{array}{lll}
\mathcal{O}(\# \text { edges }+ \text { \# Vars }) & \text { calls of } & \text { union* } \\
\mathcal{O}(\# \text { edges }+ \text { \# Vars }) & \text { calls of } & \text { find } \\
\mathcal{O}(\# \text { Vars }) & \text { calls of } & \text { union }
\end{array}
$$

\Longrightarrow We require efficient Union-Find data-structure :-)

Idea:

Represent partition of U as directed forest:

- For $u \in U$ a reference $F[u]$ to the father is maintained;
- Roots are elements u with $F[u]=u$.

Single trees represent equivalence classes.
Their roots are their representatives ...

$\rightarrow \quad$ find (π, u) follows the father references :-)
$\rightarrow \quad$ union $\left(\pi, u_{1}, u_{2}\right) \quad$ re-directs the father reference of one $u_{i} \ldots$

0	1	2	3	4	5	6	7

1	1	3	1	4	7	5	7

0	1	2	3	4	5	6	7

1	1	3	1	7	7	5	7

The Costs:

union	$: \mathcal{O}(1)$	$:-)$
find	$: \mathcal{O}(\operatorname{depth}(\pi))$	$:-($

Strategy to Avoid Deep Trees:

- Put the smaller tree below the bigger !
- Use find to compress paths ...

0	1	2	3	4	5	6	7

1	1	3	1	4	7	5	7

0	1	2	3	4	5	6	7

1	1	3	1	7	7	5	7

Robert Endre Tarjan, Princeton

Note:

- By this data-structure, n union- und m find operations require time $\mathcal{O}(n+m \cdot \alpha(n, n))$

$$
\text { // } \alpha \text { the inverse Ackermann-function :-) }
$$

- For our application, we only must modify union such that roots are from Vars whenever possible.
- This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast - but may not find very much.

Background 3: Fixpoint Algorithms

Consider:

$$
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n
$$

Observation:

RR-Iteration is inefficient:
$\rightarrow \quad$ We require a complete round in order to detect termination :-(
\rightarrow If in some round, the value of just one unknown is changed, then we still re-compute all
$\rightarrow \quad$ The practical run-time depends on the ordering on the variables

Worklist Iteration

If an unknown x_{i} changes its value, we re-compute all unknowns which depend on x_{i}. Technically, we require:
$\rightarrow \quad$ the lists $\operatorname{Dep} f_{i}$ of unknowns which are accessed during evaluation of f_{i}. From that, we compute the lists:

$$
I\left[x_{i}\right]=\left\{x_{j} \mid x_{i} \in \operatorname{Dep} f_{j}\right\}
$$

i.e., a list of all x_{j} which depend on the value of x_{i};
\rightarrow the values $D\left[x_{i}\right]$ of the x_{i} where initially $D\left[x_{i}\right]=\perp$;
\rightarrow a list W of all unknowns whose value must be recomputed ...

The Algorithm:

$$
\begin{aligned}
& W=\left[x_{1}, \ldots, x_{n}\right] ; \\
& \text { while }(W \neq[])\{ \\
& \qquad \begin{array}{l}
x_{i}=\text { extract } W ; \\
t=f_{i} \text { eval; } \\
\text { if }\left(t \nsubseteq D\left[x_{i}\right]\right)\{ \\
\qquad\left[x_{i}\right]=D\left[x_{i}\right] \sqcup t ; \\
W=\text { append } I\left[x_{i}\right] W ;
\end{array} \\
& \}
\end{aligned}
$$

where:

$$
\text { eval } x_{j}=D\left[x_{j}\right]
$$

Example:

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

	I
x_{1}	$\left\{x_{3}\right\}$
x_{2}	\emptyset
x_{3}	$\left\{x_{1}, x_{2}\right\}$

Example:

$$
\begin{array}{lll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq & x_{3} \cap\{a, b\} \\
x_{3} & \supseteq & x_{1} \cup\{c\}
\end{array}
$$

	I
x_{1}	$\left\{x_{3}\right\}$
x_{2}	\emptyset
x_{3}	$\left\{x_{1}, x_{2}\right\}$

$D\left[x_{1}\right]$	$D\left[x_{2}\right]$	$D\left[x_{3}\right]$	W
\emptyset	\emptyset	\emptyset	x_{1}, x_{2}, x_{3}
$\{a\}$	\emptyset	\emptyset	x_{2}, x_{3}
$\{a\}$	\emptyset	\emptyset	x_{3}
$\{a\}$	\emptyset	$\{a, c\}$	x_{1}, x_{2}
$\{a, c\}$	\emptyset	$\{a, c\}$	x_{3}, x_{2}
$\{a, c\}$	\emptyset	$\{a, c\}$	x_{2}
$\{a, c\}$	$\{a\}$	$\{a, c\}$	[]

Theorem

Let $\quad x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n$ denote a constraint system over the complete lattice \mathbb{D} of hight $h>0$.
(1) The algorithm terminates after at most $h \cdot N$ evaluations of right-hand sides where

$$
\left.N=\sum_{i=1}^{n}\left(1+\#\left(\operatorname{Dep} f_{i}\right)\right) \quad / / \quad \text { size of the system } \quad:-\right)
$$

(2) The algorithm returns a solution.

If all f_{i} are monotonic, it returns the least one.

