The Effects of Edges:

$$\begin{split} & [[(_,;,_)]]^{\sharp}(D,M) &= (D,M) \\ & [[(_,Pos(e),_)]]^{\sharp}(D,M) &= (D,M) \\ & [[(_,x=y;,_)]]^{\sharp}(D,M) &= (D \oplus \{x \mapsto D y\},M) \\ & [[(_,x=e;,_)]]^{\sharp}(D,M) &= (D \oplus \{x \mapsto \emptyset\},M) \quad , \quad e \notin Vars \end{split}$$

$$\begin{split} & [[(u, x = \mathsf{new}();, v)]]^{\sharp}(D, M) = (D \oplus \{x \mapsto \{(u, v)\}\}, M) \\ & [[(_, x = y[e];, _)]]^{\sharp}(D, M) = (D \oplus \{x \mapsto \bigcup \{M(f) \mid f \in D y\}\}, M) \\ & [[(_, y[e_1] = x;, _)]]^{\sharp}(D, M) = (D, M \oplus \{f \mapsto (Mf \cup Dx) \mid f \in D y\}) \end{split}$$

Warning:

- The value **Null** has been ignored. Dereferencing of **Null** or negative indices are not detected :-(
- Destructive updates are only possible for variables, not for blocks in storage!

 \implies no information, if not all block entries are initialized before use :-((

• The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference semantics :-(

In order to prove correctness, we first instrument the concrete semantics with extra information which records where a block has been created. • We compute **possible** points-to information.

...

- From that, we can extract may-alias information.
- The analysis can be rather expensive without finding very much :-(
- Separate information for each program point can perhaps be abandoned ??

Alias Analysis 2. Idea:

Compute for each variable and address a value which safely approximates the values at every program point simultaneously !

... in the Simple Example:

$$0 \\ x = new();$$

1
y = new();
2
x[0] = y;
3
y[1] = 7;
4

x	$\{(0,1)\}$
y	$\{(1, 2)\}$
(0 , 1)	{(1 , 2)}
(1,2)	Ø

Each edge (*u*, *lab*, *v*) gives rise to constraints:

lab	Constraint
x = y;	$\mathcal{P}[x] \supseteq \mathcal{P}[y]$
$x = \operatorname{new}();$	$\mathcal{P}[x] \supseteq \{(u,v)\}$
x = y[e];	$\mathcal{P}[x] \supseteq \bigcup \{ \mathcal{P}[f] \mid f \in \mathcal{P}[y] \}$
$y[e_1] = x;$	$\mathcal{P}[f] \supseteq (f \in \mathcal{P}[y]) ? \mathcal{P}[x] : \emptyset$
	for all $f \in Addr^{\sharp}$

Other edges have no effect :-)

Discussion:

- The resulting constraint system has size $O(k \cdot n)$ for k abstract addresses and n edges :-(
- The number of necessary iterations is O(k) ...
- The computed information is perhaps still too zu precise !!?
- In order to prove correctness of a solution $s^{\sharp} \in States^{\sharp}$ we show:

Alias Analysis 3. Idea:

Determine one equivalence relation \equiv on variables x and memory accesses y[] with $s_1 \equiv s_2$ whenever s_1, s_2 may contain the same address at some u_1, u_2

... in the Simple Example:

 $0 \\ x = new(); \\1 \\ y = new(); \\2 \\ x[0] = y; \\3 \\ y[1] = 7; \\4 \end{bmatrix} \equiv \{ \{x\}, \\\{y, x[]\}, \\\{y[]\}\}$

Discussion:

- \rightarrow We compute a single information fo the whole program.
- → The computation of this information maintains partitions $\pi = \{P_1, \dots, P_m\}$:-)
- → Individual sets P_i are identified by means of representatives $p_i \in P_i$.
- \rightarrow The operations on a partition π are:

find (π, p) = p_i if $p \in P_i$ // returns the representative union (π, p_{i_1}, p_{i_2}) = $\{P_{i_1} \cup P_{i_2}\} \cup \{P_j \mid i_1 \neq j \neq i_2\}$ // unions the represented classes

- → If $x_1, x_2 \in Vars$ are equivalent, then also $x_1[]$ and $x_2[]$ must be equivalent :-)
- → If $P_i \cap Vars \neq \emptyset$, then we choose $p_i \in Vars$. Then we can apply union recursively :

$$\begin{aligned} \mathsf{union}^*\left(\pi, q_1, q_2\right) &= \mathsf{let} \ p_{i_1} &= \mathsf{find}\left(\pi, q_1\right) \\ p_{i_2} &= \mathsf{find}\left(\pi, q_2\right) \\ \mathsf{in} \ \mathsf{if} \ p_{i_1} == p_{i_2} \mathsf{then} \ \pi \\ \mathsf{else} \ \mathsf{let} \ \pi &= \mathsf{union}\left(\pi, p_{i_1}, p_{i_2}\right) \\ \mathsf{in} \ \mathsf{if} \ p_{i_1}, p_{i_2} \in \mathit{Vars} \mathsf{then} \\ \mathsf{union}^*\left(\pi, p_{i_1}[\], p_{i_2}[\]\right) \end{aligned}$$

The analysis iterates over all edges once:

$$egin{aligned} &\pi=\{\{x\},\{x[\,]\}\mid x\in Vars\};\ & ext{forall}\quad k=(_,lab,_)\quad & ext{do}\quad \pi=[\![lab]\!]^{\sharp}\,\pi; \end{aligned}$$

where:

$$\begin{bmatrix} x = y; \end{bmatrix}^{\sharp} \pi = \operatorname{union}^{*} (\pi, x, y)$$
$$\begin{bmatrix} x = y[e]; \end{bmatrix}^{\sharp} \pi = \operatorname{union}^{*} (\pi, x, y[])$$
$$\begin{bmatrix} y[e] = x; \end{bmatrix}^{\sharp} \pi = \operatorname{union}^{*} (\pi, x, y[])$$
$$\begin{bmatrix} lab \end{bmatrix}^{\sharp} \pi = \pi \quad \text{otherwise}$$

... in the Simple Example:

0

$$x = new();$$

1
 $y = new();$
2
 $x[0] = y;$
3
 $y[1] = 7;$
4

$$\{ \{x\}, \{y\}, \{x[]\}, \{y[]\} \}$$

$$(0,1) \ \{ \{x\}, \{y\}, \{x[]\}, \{y[]\} \}$$

$$(1,2) \ \{ \{x\}, \{y\}, \{x[]\}, \{y[]\} \}$$

$$(2,3) \ \{ \{x\}, \{y, x[]\}, \{y[]\} \}$$

$$(3,4) \ \{ \{x\}, \{y, x[]\}, \{y[]\} \}$$

... in the More Complex Example:

Warning:

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

Complexity:

we havve:

$\mathcal{O}(\# edges + \# Vars)$	calls of	$union^*$
O(# edges + # Vars)	calls of	find
$\mathcal{O}($ # Vars $)$	calls of	union

→ We require efficient Union-Find data-structure :-)

Idea:

Represent partition of U as directed forest:

- For $u \in U$ a reference F[u] to the father is maintained;
- Roots are elements u with F[u] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...

→ find (π, u) follows the father references :-) → union (π, u_1, u_2) re-directs the father reference of one u_i ...

The Costs:

union	•	$\mathcal{O}(1)$:-)
find	•	$\mathcal{O}(depth(\pi))$:-(

Strategy to Avoid Deep Trees:

- Put the smaller tree below the bigger !
- Use find to compress paths ...

1	1	3	1	7	7	5	7
---	---	---	---	---	---	---	---

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

ſ

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

0	1	2	3	4	5	6	7
5	1	3	1	1	7	1	1

Robert Endre Tarjan, Princeton

Note:

• By this data-structure, *n* union- und *m* find operations require time $O(n + m \cdot \alpha(n, n))$

// α the inverse Ackermann-function :-)

- For our application, we only must modify **union** such that roots are from *Vars* whenever possible.
- This modification does not increase the asymptotic run-time.
 :-)

Summary:

The analysis is extremely fast — but may not find very much.

Background 3: Fixpoint Algorithms

Consider: $x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$

Observation:

RR-Iteration is inefficient:

- \rightarrow We require a complete round in order to detect termination :-(
- \rightarrow If in some round, the value of just one unknown is changed, then we still re-compute all :-(
- \rightarrow The practical run-time depends on the ordering on the variables :-(

If an unknown x_i changes its value, we re-compute all unknowns which depend on x_i . Technically, we require:

→ the lists $Dep f_i$ of unknowns which are accessed during evaluation of f_i . From that, we compute the lists:

 $I[x_i] = \{x_j \mid x_i \in Dep f_j\}$

i.e., a list of all x_i which depend on the value of x_i ;

- \rightarrow the values $D[x_i]$ of the x_i where initially $D[x_i] = \bot$;
- \rightarrow a list *W* of all unknowns whose value must be recomputed ...

Idea:

The Algorithm:

 $W = [x_1, \ldots, x_n];$ while $(W \neq [])$ { $x_i = \text{extract } W;$ $t = f_i \text{ eval};$ if $(t \not\sqsubseteq D[x_i])$ { $D[x_i] = D[x_i] \sqcup t;$ $W = \text{append } I[x_i] W;$ } } where :

 $eval x_j = D[x_j]$

Example:

 $x_1 \supseteq \{a\} \cup x_3$ $x_2 \supseteq x_3 \cap \{a, b\}$ $x_3 \supseteq x_1 \cup \{c\}$

Example:

 $\begin{array}{ll} x_1 & \supseteq & \{a\} \cup x_3 \\ x_2 & \supseteq & x_3 \cap \{a, b\} \\ x_3 & \supseteq & x_1 \cup \{c\} \end{array}$

$D[x_1]$	$D[x_2]$	$D[x_3]$	W
Ø	Ø	Ø	x_1, x_2, x_3
{ <i>a</i> }	Ø	Ø	x_2, x_3
{ <i>a</i> }	Ø	Ø	<i>x</i> ₃
{ <i>a</i> }	Ø	{ <i>a</i> , <i>c</i> }	x_1, x_2
$\{a, c\}$	Ø	{ <i>a</i> , <i>c</i> }	x_3, x_2
$\{a, c\}$	Ø	{ <i>a</i> , <i>c</i> }	<i>x</i> ₂
$\{a, c\}$	{ a }	{ <i>a</i> , <i>c</i> }	[]

Theorem

Let $x_i \supseteq f_i(x_1, ..., x_n)$, i = 1, ..., n denote a constraint system over the complete lattice \mathbb{D} of hight h > 0.

(1) The algorithm terminates after at most $h \cdot N$ evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (Dep f_i)) \qquad // \text{ size of the system :-)}$$

(2) The algorithm returns a solution. If all f_i are monotonic, it returns the least one.