
The Effects of Edges:

[[(_, ;, _)]]♯ (D,M) = (D,M)

[[(_, Pos(e), _)]]♯ (D,M) = (D,M)

[[(_, x = y;, _)]]♯ (D,M) = (D⊕ {x 7→ D y},M)

[[(_, x = e;, _)]]♯ (D,M) = (D⊕ {x 7→ ∅},M) , e 6∈ Vars

[[(u, x = new();, v)]]♯ (D,M) = (D⊕ {x 7→ {(u, v)}},M)

[[(_, x = y[e];, _)]]♯ (D,M) = (D⊕ {x 7→
⋃
{M( f ) | f ∈ D y}},M)

[[(_, y[e1] = x;, _)]]♯ (D,M) = (D,M⊕ { f 7→ (M f ∪ D x) | f ∈ D y})
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Warning:

• The value Null has been ignored. Dereferencing of Null

or negative indices are not detected :-(

• Destructive updates are only possible for variables, not for

blocks in storage!

==⇒ no information, if not all block entries are initialized

before use :-((

• The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference

semantics :-(

In order to prove correctness, we first instrument the concrete

semantics with extra information which records where a

block has been created.
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• ...

• We compute possible points-to information.

• From that, we can extract may-alias information.

• The analysis can be rather expensive — without finding very

much :-(

• Separate information for each program point can perhaps be

abandoned ??
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Alias Analysis 2. Idea:

Compute for each variable and address a value which safely

approximates the values at every program point simultaneously !

... in the Simple Example:

y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new();

x {(0, 1)}

y {(1, 2)}

(0, 1) {(1, 2)}

(1, 2) ∅
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Each edge (u, lab, v) gives rise to constraints:

lab Constraint

x = y; P [x] ⊇ P [y]

x = new(); P [x] ⊇ {(u, v)}

x = y[e]; P [x] ⊇
⋃
{P [ f ] | f ∈ P [y]}

y[e1] = x; P [ f ] ⊇ ( f ∈ P [y]) ?P [x] : ∅

for all f ∈ Addr♯

Other edges have no effect :-)
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Discussion:

• The resulting constraint system has size O(k · n) for k

abstract addresses and n edges :-(

• The number of necessary iterations is O(k) ...

• The computed information is perhaps still too zu precise !!?

• In order to prove correctness of a solution s♯ ∈ States♯ we

show:

s s1

s♯

[[k]]

∆ ∆
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Alias Analysis 3. Idea:

Determine one equivalence relation ≡ on variables x and

memory accesses y[ ] with s1 ≡ s2 whenever s1, s2 may

contain the same address at some u1, u2

... in the Simple Example:

y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new();

≡ = {{x},

{y, x[ ]},

{y[ ]}}
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Discussion:

→ We compute a single information fo the whole program.

→ The computation of this information maintains partitions

π = {P1, . . . , Pm} :-)

→ Individual sets Pi are identified by means of

representatives pi ∈ Pi.

→ The operations on a partition π are:

find (π , p) = pi if p ∈ Pi

// returns the representative

union (π , pi1 , pi2) = {Pi1 ∪ Pi2} ∪ {Pj | i1 6= j 6= i2}

// unions the represented classes
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→ If x1, x2 ∈ Vars are equivalent, then also x1[ ] and

x2[ ] must be equivalent :-)

→ If Pi ∩Vars 6= ∅ , then we choose pi ∈ Vars . Then we can

apply union recursively :

union∗ (π , q1, q2) = let pi1 = find (π , q1)

pi2 = find (π , q2)

in if pi1 == pi2 then π

else let π = union (π , pi1 , pi2)

in if pi1 , pi2 ∈ Vars then

union∗ (π , pi1 [ ], pi2 [ ])
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The analysis iterates over all edges once:

π = {{x}, {x[ ]} | x ∈ Vars};

forall k = (_, lab, _) do π = [[lab]]♯ π ;

where:

[[x = y;]]♯ π = union∗ (π , x, y)

[[x = y[e];]]♯ π = union∗ (π , x, y[ ])

[[y[e] = x;]]♯ π = union∗ (π , x, y[ ])

[[lab]]♯ π = π otherwise
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... in the Simple Example:

y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new(); {{x}, {y}, {x[ ]}, {y[ ]}}

(0, 1) {{x}, {y}, {x[ ]}, {y[ ]}}

(1, 2) {{x}, {y}, {x[ ]}, {y[ ]}}

(2, 3) {{x}, {y, x[ ]} , {y[ ]}}

(3, 4) {{x}, {y, x[ ]}, {y[ ]}}
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... in the More Complex Example:

r = Null;

Pos(t 6= Null)Neg(t 6= Null)

7

r = h;

3

4

5

6

2

h = t;

1

0

t = t[0];

h[0] = r;

{{h}, {r}, {t}, {h[ ]}, {t[ ]}}

(2, 3) { {h, t} , {r}, {h[ ], t[ ]} }

(3, 4) { {h, t, h[ ], t[ ]} , {r}}

(4, 5) { {h, t, r, h[ ], t[ ]} }

(5, 6) {{h, t, r, h[ ], t[ ]}}
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Warning:

In order to find something, we must assume that variables /

addresses always receive a value before they are accessed.

Complexity:

we havve:

O(# edges+ #Vars) calls of union∗

O(# edges+ #Vars) calls of find

O(#Vars) calls of union

==⇒ We require efficient Union-Find data-structure :-)
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Idea:

Represent partition of U as directed forest:

• For u ∈ U a reference F[u] to the father is maintained;

• Roots are elements u with F[u] = u .

Single trees represent equivalence classes.

Their roots are their representatives ...
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0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

→ find (π , u) follows the father references :-)

→ union (π , u1, u2) re-directs the father reference of one ui ...
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0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6
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0 1 2 3 6 74 50 1 2 3 6 74 5

0

1

3

2

4

7

1 1 3 1 7 7 5 7

5

6
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The Costs:

union : O(1) :-)

find : O(depth(π)) :-(

Strategy to Avoid Deep Trees:

• Put the smaller tree below the bigger !

• Use find to compress paths ...
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0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6
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0 1 2 3 6 74 50 1 2 3 6 74 5

0

1

3

2

4

7

1 1 3 1 7 7 5 7

5

6
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3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1
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3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1
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3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1
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3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

400



3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 1 7 1 1

1
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Robert Endre Tarjan, Princeton
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Note:

• By this data-structure, n union- und m find operations

require time O(n+ m ·α(n, n))

// α the inverse Ackermann-function :-)

• For our application, we only must modify union such that

roots are from Vars whenever possible.

• This modification does not increase the asymptotic run-time.

:-)

Summary:

The analysis is extremely fast — but may not find very much.
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Background 3: Fixpoint Algorithms

Consider: xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n

Observation:

RR-Iteration is inefficient:

→ We require a complete round in order to detect termination

:-(

→ If in some round, the value of just one unknown is changed,

then we still re-compute all :-(

→ The practical run-time depends on the ordering on the

variables :-(
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Idea: Worklist Iteration

If an unknown xi changes its value, we re-compute all

unknowns which depend on xi . Technically, we require:

→ the lists Dep fi of unknowns which are accessed during

evaluation of fi. From that, we compute the lists:

I[xi] = {x j | xi ∈ Dep f j}

i.e., a list of all x j which depend on the value of xi ;

→ the values D[xi] of the xi where initially D[xi] = ⊥ ;

→ a list W of all unknowns whose value must be

recomputed ...
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The Algorithm:

W = [x1, . . . , xn];

while (W 6= [ ]) {

xi = extractW;

t = fi eval;

if (t 6⊑ D[xi]) {

D[xi] = D[xi] ⊔ t;

W = append I[xi] W;

}

}

where :

eval x j = D[x j]
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Example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

I

x1 {x3}

x2 ∅

x3 {x1, x2}

D[x1] D[x2] D[x3] W

∅ ∅ ∅ x1 , x2, x3

{a} ∅ ∅ x2 , x3

{a} ∅ ∅ x3

{a} ∅ {a, c} x1 , x2

{a, c} ∅ {a, c} x3 , x2

{a, c} ∅ {a, c} x2

{a, c} {a} {a, c} ∅
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Example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

I

x1 {x3}

x2 ∅

x3 {x1, x2}

D[x1] D[x2] D[x3] W

∅ ∅ ∅ x1 , x2, x3

{a} ∅ ∅ x2 , x3

{a} ∅ ∅ x3

{a} ∅ {a, c} x1 , x2

{a, c} ∅ {a, c} x3 , x2

{a, c} ∅ {a, c} x2

{a, c} {a} {a, c} [ ]
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Theorem

Let xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n denote a constraint

system over the complete lattice D of hight h > 0 .

(1) The algorithm terminates after at most h · N evaluations

of right-hand sides where

N =
n

∑
i=1

(1 + # (Dep fi)) // size of the system :-)

(2) The algorithm returns a solution.

If all fi are monotonic, it returns the least one.
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